Образы героев поединок куприн. Cочинение «Изображение армейской среды в повести А. И. куприна «Поединок. Другие сочинения по этому произведению

Ядерная оболочка (нуклеолемма) представляет собой сложное образование, отделяющее содержимое ядра от цитоплазмы и других элементов живой клетки. Данная оболочка выполняет ряд важных функций, без которых является невозможным функционирование ядер, полноценное . Чтобы определить роль ядерных мембран в жизнедеятельности эукариотных клеток, необходимо узнать не только главные функции, но и особенности строения.

В статье подробно рассматриваются функции ядерной оболочки. Описывается строение, структурные компоненты нуклеолеммы, их взаимосвязь, механизмы транспортировки веществ, процесс деления при митозе.

Строение оболочки

Главное отличие эукариот заключается в наличии ядра и ряда других органелл, необходимых для его поддержания. Такие клетки входят в состав всех растений, грибов, животных, в то время как клетки-прокариоты представляют собой простейшие безъядерные организмы.

Нуклеолемма состоит из двух структурных элементов - внутренней и наружной мембран. В промежутке между ними существует свободное пространство, называемое перинуклеарным. Ширина перинуклеарного промежутка нуклеолеммы составляет от 20 до 60 нанометров (нм).

Внешняя мембрана нуклеолеммы контактирует с клеточной цитоплазмой. На ее наружной поверхности располагается существенное число рибосом, которые отвечают за из отдельных аминокислот. Внешняя мембрана не содержит рибосом.

Мембраны, образующие нуклеолемму, состоят из белковых соединений и двойного слоя фосфолипидных веществ. Механическая прочность оболочки обеспечивается сетью филаментов - нитевидных белковых структур. Наличие филаментной сети характерно для большинства эукариот. Они соприкасаются с внутренней мембраной.

Сети филаментов располагаются не только в области нукелолеммах. Такие структуры также располагаются в цитоплазме. Их функция заключается в сохранении целостности клетки, а также в формировании контактов между клетками. При этом, отмечается, что слои, образующие сеть, регулярно перестраиваются. Данный процесс наиболее активен в период роста клеточного ядра перед делением.

Сеть филаментов, которая поддерживает мембраны, называется ядерной ламиной. Она формируется из определенной последовательности белков-полимеров, которые называются ламинами. Она взаимодействует с хроматином - веществом, участвующим в формировании хромосом. Также ламина контактирует с молекулами рибонуклеиновой кислоты, ответственными за .

Внешняя мембрана ядра взаимодействует с мембраной, окружающей эндоплазматический ретикулум. В определенных участках оболочки происходит контакт перинуклеарного пространства и внутреннего пространства ретикулума.

Функции эндоплазматического ретикулума:

  • Синтез и транспортировка белков
  • Хранение продуктов синтеза
  • Формирование новой оболочки при митозе
  • Хранение , выполняющих функцию медиатора
  • Продукция гормонов

Внутри оболочки располагаются ядерные поровые комплексы. Это каналы, посредством которых происходит перенос молекул между клеточным ядром, цитоплазмой и другими клеточными органеллами. На одном квадратном микроне поверхности нуклеолеммы располагает от 10 до 20 поровых комплекса. Исходя из этого, в оболочке 1 соматической клетки может находится всего от 2 до 4 тысяч ЯПК.

Помимо транспорта веществ, оболочка выполняет опорную и защитную функцию. Она отделяет ядро от содержимого цитоплазмы, в том числе продуктов деятельности других органелл. Защитная функция заключается в предохранении генетической информации ядра от негативного воздействия, например, .

Считается, что двойная мембрана ядерной оболочки сформировалась в ходе эволюции путем захвата одних клеток другими. Вследствие этого, некоторые поглощенные клетки сохранили собственную активность, но при этом их ядро было окружено двойной мембраной - собственной, и мембраной клетки-хозяина.

Таким образом, ядерная оболочка представляет собой сложную структуру, состоящую из двойной мембраны, содержащей ядерные поры.

Строение и свойства ЯПК

Ядерный поровый комплекс - это симметричный канал, местом локализации которого является сличение наружной и внутренней мембран. ЯПК состоят из набора веществ, включающих около 30 видов белков.

Ядерные поры имеют бочкообразную форму. Образуемый канал не ограничивается ядерными мембранами, а незначительно выступает за их пределы. В результате с двух сторон оболочки возникают кольцеобразные выступы. Размер этих выступов отличается, так как с одной стороны кольцеобразное образование имеет больший диаметр, чем с другой. Элементы ядерных пор, выступающих за пределы мембраны, называются терминальными структурами.

Цитоплазматическая терминальная структура (та что находится на внешней поверхности ядерной мембраны) состоит из восьми коротких фибрилл-нитей. Ядерная терминальная структура также состоит из 8 фибрилл, однако они образуют кольцо, выполняющего функции корзины. Во многих клетках от ядерной корзины исходят дополнительные фибриллы. Терминальные структуры являются местами, где происходит контакт молекул, транспортируемых через ядерные поры.

В месте расположения ЯПК происходит слияние наружной и внутренней ядерной мембраны. Такое слияние объясняется необходимостью обеспечить фиксацию ядерных пор в мембранах с помощью белков, соединяющих их также с ядерной ламиной.

В настоящее время общепринятым считается модульное строение ядерных каналов. Такая модель предусматривает структуру поры, состоящую из нескольких кольцевидных образований.

Внутри ядерной поры постоянно находится плотное вещество. Ее происхождение точно не известно, однако считается, что оно является одним из элементов ЯПК, за счет которого осуществляется транспортировка молекул от цитоплазмы к ядру и наоборот. Благодаря исследованию с использованием электронных микроскопов с высоким разрешением удалось выяснить, что плотная среда внутри ядерного канала способна менять свое месторасположение. Ввиду этого, считается, плотная внутренняя среда ЯПК является карго-рецепторным комплексом.

Транспортные функции ядерной оболочки возможны благодаря наличию ядерных поровых комплексов.

Виды ядерного транспорта

Транспортировка веществ через ядерную оболочку называется ядерно-цитоплазматическим транспортом веществ. Данный процесс предусматривает своеобразный обмен молекулами, синтезируемыми в ядре, и веществами, обеспечивающими жизнедеятельность самого ядра, импортируемыми из цитоплазмы.

Существуют такие виды транспортировки:

  1. Пассивная. Посредством данного процесса осуществляется перемещение небольших молекул. В частности, через пассивный транспорт происходит передача мононуклеотидов, минеральных компонентов, продуктов метаболического обмена. Процесс называется пассивным, так как протекает путем диффузии. Скорость прохождения через ядерную пору зависит от размера вещества. Чем оно меньше, тем выше скорость транспортировки.
  2. Активная. Предусматривает перенос через каналы внутри ядерной оболочки крупных молекул или их соединений. При этом, соединения не распадаются на мелкие частицы, что позволило бы увеличить скорость транспортировки. Данный процесс обеспечивает поступление в цитоплазму синтезируемых в ядре рибонуклеиновых молекул. Из внешнего цитоплазматического пространства за счет активного транспорта происходит перенос белков, необходимых для метаболических процессов.

Выделяют пассивный и активный транспорт белков, отличающийся механизмом действия.

Импорт и экспорт белков

Рассматривая функции ядерной оболочки, необходимо напомнить о том, что транспортировка веществ осуществляется в двух направлениях - из цитоплазмы в ядро и наоборот.

Импорт белковых соединений через мембраны к ядру осуществляется за счет наличия особых рецепторов, называемых транспортинами. Эти компоненты содержат запрограммированный сигнал, за счет которого происходит движение в необходимом направлении. и соединения, не обладающие таким сигналом, способны присоединятся к веществам, у которых он есть, и таким образом беспрепятственно перемещаться.

Важно отметить, что сигналы ядерного импорта обеспечивают избирательность поступления веществ в ядро. Многие образования, в числе которых полимеразы ДНК и РНК, а также белки, участвующие в процессах регуляции, не достигают ядра. Таким образом, ядерные поры представляют собой не только механизм транспортировки веществ, но и их своеобразной сортировки.

Сигнальные белки отличаются друг от друга. Ввиду этого, существует разница между скоростью перемещения через поры. Также они выполняют функцию источника энергии, так как для перемещения крупных молекул, транспортировка которых не возможна диффузным путем, необходимы дополнительные энергетические затраты.

Первый этап импорта белков заключается в присоединении к импортину (транспортину, обеспечивающему перенос через канал к ядру). Полученное в результате слияния сложное образование проходит через ядерную пору. После этого, с ним связывается другое вещество, за счет которого транспортируемый белок освобождается, а импортин возвращается обратно в цитоплазму. Таким образом, импорт в ядро представляет собой цикличный замкнутый процесс.

Транспорт веществ из ядра через оболочку в цитоплазматическое пространство осуществляется аналогичным образом. Исключением является то, что за перенос вещества-груза отвечают уже сигнальные белки, называемые экспортинами.

На первой стадии процесса белок (в большинстве случаев это молекулы РНК) связываются с экспортином и веществом, отвечающим за высвобождение транспортируемого субстрата. После перехода сквозь оболочку нуклеотид расщепляется, за счет чего переносимый белок высвобождается.

В целом, перенос веществ между ядром и цитоплазмой представляет собой цикличный процесс, осуществляемый за счет белков-транспортинов и веществ, отвечающих за высвобождение груза.

Ядерная оболочка при делении

Большинство клеток-эукариотов размножаются путем непрямого деления, которое называется митозом. Данный процесс предусматривает разделение ядра и других клеточных структур с сохранением одинакового количества хромосом. За счет этого сохраняется генетическая идентичность, полученная в результате деления клеток.

В процессе деления нуклеолемма выполняет еще одну важную функцию. После того как происходит разрушение ядра, внутренняя мембрана не позволяет хромосомам расходится на большие расстояния друг от друга. Хромосомы фиксируются на поверхности мембраны до момента полноценного деления ядер и формирования новой нуклеолеммы.

Ядерная оболочка, несомненно, принимает активное участие в клеточном делении. Процесс состоит из двух последовательных этапов - разрушения и перестройки.

Распад ядерной оболочки происходит в прометафазе. Разрушение мембран происходит стремительно. После распада хромосомы характеризуются хаотичным расположением в области ранее существовавшего ядра. В дальнейшем образуется веретено деления - биполярная структура, между полюсами которой формируются микротрубочки. Веретено обеспечивает деление хромосом и их распределение между двумя дочерними клетками.

Перераспределение хромосом и формирование новых ядерных мембран происходит в период телофазы. Точный механизм восстановления оболочек не известен. Распространенной является теория о том, что слияние частиц разрушенной оболочки происходит под действием везикул - мелких клеточных органелл, функция которых заключается в сборе и хранении питательных веществ.

Также образование новых ядерных мембран связывают с переформировкой эндоплазматического ретикулума. Из разрушенного ЭПР высвобождаются белковые соединения, которые постепенно обволакивают пространство вокруг нового ядра, в результате чего в дальнейшем образуется целостная мембранная поверхность.

Таким образом, нуклеолемма принимает непосредственное участие в процессе деления клетки путем митоза.

Ядерная оболочка - сложный структурный компонент клетки, выполняющий барьерные, защитные, транспортные функции. Полноценное функционирование нуклеолеммы обеспечивается , взаимодействием с другими клеточными компонентами и биохимическими процессами, протекающими в них.

Роль ядра:Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую - с ее реализацией, с обеспечением синтеза белка.

В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекулы ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменным в ряду поколений клеток или организмов. Далее, в ядре происходит воспроизведение или редупликация молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном и в количественном смысле объемы генетической информации. В ядрах происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток.

Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственно аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК и рибосомных РНК. В ядре эукариотов происходит также образование субъедениц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро.

Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Поэтому выпадение лил нарушение любой из перечисленных выше функций губительно для клетки в целом. Так нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что также губительно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке или к грубым его нарушениям.

Значение ядра как хранилища генетического материала и его главная роль в определении фенотипических признаков были установлены давно. Немецкий биолог Хаммерлинг одним из первых продемонстрировал важнейшую роль ядра. Он выбрал в качестве объекта своих экспериментов необычайно крупную одноклеточную (или неклеточную) морскую водоросль Acetabularia .

Хаммерлинг показал, что для нормального развития шляпки необходимо ядро. В дальнейших экспериментах, в которых соединяли нижнюю часть, содержащую ядро одного вида с лишенным ядра стебельком другого вида, у таких химер всегда развивалась шляпка, типичная для того вида, которому принадлежит ядро.

При оценке этой модели ядерного контроля следует, однако, учитывать примитивность организма, использованного в качестве объекта. Метод пересадок был применен позднее в экспериментах, проведенных в 1952 г. двумя американскими исследователями, Бриггсом и Кингом, с клетками лягушки Rana pipenis . Эти авторы удаляли из неоплодотворенных яйцеклеток ядра и заменяли их ядрами из клеток поздней бластулы, уже проявлявших признаки дифференцировки. Во многих случаях из яиц реципиентов развивались нормальные взрослые лягушки.

Говоря о клеточном ядре, мы имеем в виду собственно ядра эукариотических клеток. Их ядра построены сложным образом и довольно резко отличаются от УядерныхФ образований, нуклеоидов, прокариотических организмов. У последних в состав нуклеоидов (ядроподобных структур) входит одиночная кольцевая молекула ДНК, практически лишенная белков. Иногда такую молекулу ДНК бактериальных клеток называют бактериальной хромосомой, или генофором (носителем генов). Бактериальная хромосома не отделена мембранами от основной цитоплазмы, однако собрана в компактную ядерную зону - нуклеоид, который можно видеть в световом микроскопе после специальных окрасок.

Сам термин ядро впервые был применен Броуном в 1833 г. Для обозначения шаровидных постоянных структур в клетках растений. Позднее такую же структуру описали во всех клетках высших организмов.

Клеточное ядро обычно одно на клетку (есть примеры многоядерных клеток), состоит из ядерной оболочки, отделяющей его от цитоплазмы, хроматина, ядрышка, кариоплазмы (или ядерного сока) (рис). Эти четыре основных компонента встречаются практически во всех неделящихся клетках эукариоти-ческих одно- и многоклеточных организмов.

Ядра имеют обычно шаровидную или яйцевидную форму; диаметр первых равен приблизительно 10 мкм, а длина вторых - 20 мкм.

Ядро необходимо для жизни клетки, поскольку именно оно регулирует всю ее активность. Связано это с тем, что ядро несет в себе генетическую (наследственную) информацию, заключенную в ДНК.

Ядерная оболочка

Эта структура характерна для всех эукариотических клеток. Ядерная оболочка состоит из внешней и внутренней мембран, разделенных перинуклеарным пространством шириной от 20 до 60 нм. В состав ядерной оболочки входят ядерные поры.

Мембраны ядерной оболочки в морфологическом отношении не отличаются от остальных внутриклеточных мембран: они имеют толщину около 7 нм и состоят из двух осмиофильных слоев.

В общем виде ядерная оболочка может быть представлена, как полый двухслойный мешок, отделяющий содержимое ядра от цитоплазмы. Из всех внутриклеточных мембранных компонентов таким типом расположения мембран обладают только ядро, митохондрии и пластиды. Однако ядерная оболочка имеет характерную особенность, отличающую ее от других мембранных структур клетки. Это наличие особых пор в оболочке ядра, которые образуются за счет многочисленных зон слияний двух ядерных мембран и представляет собой как бы округлые перфорации всей ядерной оболочки.

Строение ядерной оболочки

Внешняя мембрана ядерной оболочки, непосредственно контактирующая с цитоплазмой клетки, имеет ряд сруктурных особенностей, позволяющих отнести ее к собственно мембранной системе эндоплазматического ретикулума. Так, на внешней ядерной мембране обычно располагается большое количество рибосом. У большинства животных и растительных клеток внешняя мембрана ядерной оболочки не представляет собой идеально ровную поверхность - она может образовывать различной величины выпячивания или выросты в сторону цитоплазмы.

Внутренняя мембрана контактирует с хромосомным материалом ядра (см. Ниже).

Наиболее характерной и бросающейся в глаза структурой в ядерной оболочке является ядерная пора. Поры в оболочке образуются за счет слияния двух ядерных мембран в виде округлых сквозных отверстий или перфораций с диаметром 80-90 нм. Округлое сквозное отверстие в ядерной оболочке заполнено сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют комплексом пор ядра. Тем самым подчеркивается, что ядерная пора не просто сквозная дыра в ядерной оболочке, через которую непосредственно вещества ядра и цитоплазмы могут сообщаться.

Сложный комплекс пор имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит со стороны ядра, другой - со стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От этих гранул отходят фибриллярные отростки. Такие фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму, поперек поры. В центре отверстия часто можно видеть так называемую центральную гранулу.

Число ядерных пор зависит от метаболической активности клеток: чем выше синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра.

Количество ядерных пор в различных объектах

Химия ядерной оболочки

В составе ядерных оболочек обнаруживаются небольшие количества ДНК (0-8%), РНК (3-9%), но основными химическими компонентами являются липиды (13-35%) и белки (50-75%), что для всех клеточных мембран.

Состав липидов сходен с таковым в мембранах микросом или мембранах эндоплазматической сети. Ядерные оболочки характеризуются относительно низким содержанием холестерина и высоким - фосфолипидов, обогащенных насыщенными жирными кислотами.

Белковый состав мембранных фракций очень сложен. Среди белков обнаружен ряд ферментов, общих с ЭР (например, глюкозо-6-фосфатаза, Mg-зависимая АТФаза, глютамат-дегидрогеназа и др.) не обнаружена РНК-полимераза. Тут выявлены активности многих окислительных ферментов (цитохромоксидазы, НАДН-цитохром-с-редуктазы) и различных цитохромов.

Среди белковых фракций ядерных мембран встречаются основные белки типа гистонов, что объясняется связью участков хроматина с ядерной оболочкой.

Ядерная оболочка и ядерно-цитоплазматический обмен

Ядерная оболочка - система, разграничивающая два основных клеточных отсека: цитоплазму и ядро. Ядерные оболочки полностью проницаемы для ионов, для веществ малого молекулярного веса, таких, как сахара, аминокислоты, нуклеотиды. Считается, что белки молекулярного веса до 70 тыс. И размером не больше 4,5 нм могут свободно диффундировать через оболочку.

Известен и обратный процесс - перенос веществ из ядра в цитоплазму. Это в первую очередь касается транспорта РНК синтезируещегося исключительно в ядре.

Еще один путь транспорта веществ из ядра в цитоплазму связан с образованием выростов ядерной оболочки, которые могут отделяться от ядра в виде вакуолей, содержимое их затем изливается или выбрасывается в цитоплазму.

Таким образом, из многочисленных свойств и функциональных нагрузок ядерной оболочки следует подчеркнуть ее роль как барьера, отделяющего содержимое ядра от цитоплазмы, ограничивающего свободный доступ в ядро крупных агрегатов биополимеров, барьера, активно регулирующего транспорт макромолекул между ядром и цитоплазмой.

Одной из основных функций ядерной оболочки следует считать также ее участие в создании внутриядерного порядка, в фиксации хромосомного материала в трехмерном пространстве ядра.

Ядерный матрикс

Этот комплекс не представляет собой какую-то чистую фракцию, сюда входят компоненты и ядерной оболочки, и ядрышка, и кариоплазмы. С ядерным матриксом оказались связаны как гетерогенная РНК, так и часть ДНК. Эти наблюдения дали основание считать, что матрикс ядра играет важную роль не только в поддержании общей структуры интерфазного ядра, но и может участвовать в регуляции синтеза нуклеиновых кислот.

каково строение и функции оболочки ядра?


  1. 1) состоит из наружной и внутренней мембран, разделенных перинуклеарным пространством, и сходных по строению с наружной цитоплазматической мембраной
    2) в области соединения наружной и внутренней ядерных мембран формируются ядерные поры, обеспечивающие избирательный транспорт веществ в ядро и из ядра
    3) ядерная оболочка отграничивает содержимое ядра от цитоплазмы
  2. Есть такое
  3. Ядро это наиболее крупный органоид клетки и наиболее важный. Клетка, лишенная ядра, способна жить лишь короткое время. Безъядерные клетки ситовидных трубок живые клетки, но живут они недолго. Ядро регулирует процессы жизнедеятельности клетки, а также сохраняет и передает ее наследственную информацию.

    Клетки растений обычно содержат одно ядро, у низших растений (водорослей) в клетке может быть несколько ядер. Ядро всегда лежит в цитоплазме. Форма ядра может быть различной округлой, овальной, сильно вытянутой, неправильно-многолопастной. В некоторых клетках контуры ядра меняются в ходе его функционирования, причем на его поверхности образуются лопасти различной величины.

    Размеры ядер неодинаковы и в клетках разных растений, и в разных клетках одного и того же растения. Относительно крупные ядра бывают в молодых, меристематических клетках, в которых они могут занимать до 3/4 объема всей клетки. Относительные, а иногда и абсолютные размеры ядер в развитых клетках значительно меньше, чем в молодых.

    Снаружи ядро покрыто ядерной оболочкой, состоящей из двух мембран, между которыми имеется щель околоядерное пространство. Оболочка прерывается порами. Внешняя из двух мембран оболочки дает выросты, непосредственно переходящие в стенки эндоплазматической сети цитоплазмы. И поры и прямая связь эндоплазматической сети с околоядерным пространством обеспечивают тесный контакт между ядром и цитоплазмой.

    Внутреннюю часть ядра составляет матрикс (нуклеоплазма) , хроматин и ядрышко. Хроматин и ядрышко погружены в матрикс.

    Хроматин представляет собой хромосомы в деспирализованном состоянии. Хромосомы, в свою очередь, состоят их двух хроматид, соединенных перемычкой центромерой. Основой хромосом является нить ДНК, которая несет информацию о строении белков клетки. В период деления клетки нить ДНК плотно упаковывается с помощью специфических белков гистонов, и хромосомы видны в микроскоп как палочковидные структуры.

    Ядрышко обособленная, более уплотненная часть ядра округлой или овальной формы. Предполагается, что ядрышко является центром синтеза РНК. В частности, от его деятельности зависит образование рибосом. Ядрышко исчезает перед началом деления клетки и вновь формируется в телофазе митоза.

    Нуклеоплазма (кариоплазма, основное вещество, матрикс) водянистая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур.

Ядро окружено оболочкой, состоящей из двух мембран

Наружная ядерная мембрана является продолжением мембран ЭПР, а перинуклеарное пространство (просвет) переходит в просвет ЭПР

В ядерной оболочке присутствуют многочисленные ЯПК, которые представляют собой единственные каналы обмена молекулами и макромолекулами между ядром и цитоплазмой

Ядро окружено оболочкой, состоящей из двух концентрически расположенных наружной и внутренней ядерных мембран. Каждая мембрана содержит определенный набор белков и сплошной двойной слой фосфолипидов. За исключением некоторых одноклеточных эукариот, внутренняя ядерная мембрана поддерживается сетью филаментов, закрепленных в сетчатой структуре. Эта сеть филаментов называется ядерная ламина.

Наружная ядерная мембрана переходит в мембраны ЭПР и, так же как большая часть его мембран, покрыта рибосомами, принимающими участие в синтезе белка. На рисунке ниже показана связь наружной мембраны с ЭПР.

Пространство между наружной и внутренней ядерными мембранами представляет собой перинуклеарное пространство (ПП). Так же как наружная мембрана связана с мембраной , ПП ядерной оболочки контактирует с внутренним пространством ЭПР. Толщина каждой из двух мембран составляет 7-8 нм (нм), а ширина ПП ядерной оболочки - 20-40 нм.

При исследовании препаратов ядерной оболочки в электронном микроскопе , наиболее заметной особенностью структуры являются ЯПК (ядерные поровые комплексы), которые служат каналами транспортировки большинства молекул между ядром и цитоплазмой. Оболочка ядер большинства клеток содержит около 10-20 ЯПК на квадратный микрон поверхности. Так, клетки дрожжей содержат 150-250 ЯПК, а соматические клетки млекопитающих 2000-4000.

Однако некоторые клетки обладают гораздо большей плотностью пор, вероятно, потому, что для них характерна высокая интенсивность процессов транскрипции и трансляции, что предполагает транспорт большого количества макромолекул в ядро и из него. Например, поверхность ядра ооцитов амфибий почти полностью покрыта ЯПК.

Каким образом могла возникнуть двойная ядерная мембрана ? В эукариотической клетке, митохондрии и хлоропласта также имеют двойную мембрану. Согласно гипотезе эндосимбиоза, эти органеллы образовались в ходе эволюции, когда одни клетки захватили других в процессе эндоцитоза. Затем поглощенные клетки оказались окруженными двумя мембранами: своей и мембраной клетки-хозяина. Оказалось, что некоторые из поглощенных клеток проявляют метаболическую активность, например, в отличие от клеток хозяина, способны осуществлять фотосинтез.

Наиболее убедительное доказательство в пользу эндосимбиотического происхождения митохондрий и хлоропластов заключается в том, что рибосомы обеих органелл больше напоминают рибосомы современных прокариот, и в меньшей степени эти же микроструктуры цитоплазмы эукариотической клетки. Гораздо менее ясным представляется происхождение ядра. Однако существование двойной ядерной мембраны, подобно мембране митохондрий и хлоропластов, позволяет предполагать, что захваченная прокариотическая клетка превратилась в ядро, содержащее всю клеточную ДНК.

Ядерная оболочка соединена с эндоплазматическим ретикулумом (ЭПР). Поверхность ядерной мембраны ооцита Xenopus laevis покрыта комплексами ядерных пор.
Ядро могло образоваться в результате эндосимбиоза, процесса,
при котором одна прокариотическая клетка захватывает другую клетку; затем захваченная клетка становится примитивным ядром.

Лекция № .

Количество часов: 2

Клеточное ЯДРО

1. Общая характеристика интерфазного ядра. Функции ядра

2.

3.

4.

1. Общая характеристика интерфазного ядра

Ядро - это важнейшая составная часть клетки, которая имеется практически во всех клетках многоклеточных организмов. Большинство клеток имеет одно ядро, но бывают двуядерные и многоядерные клетки (например, поперечно-полосатые мышечные волокна). Двуядерность и многоядерность обусловлены функциональными особенностями или патологическим состоянием клеток. Форма и размеры ядра очень изменчивы и зависят от вида организма, типа, возраста и функционального состояния клетки. В среднем объем ядра составляет приблизительно 10% от общего объема клетки. Чаще всего ядро имеет округлую или овальную форму размером от 3 до 10 мкм в диаметре. Минимальный размер ядра составляет 1 мкм (у некоторых простейших), максимальный - 1 мм (яйцеклетки некоторых рыб и земноводных). В некоторых случаях наблюдается зависимость формы ядра от формы клетки. Ядро обычно занимает центральное положение, но в дифференцированных клетках может быть смещено к периферийному участку клетки. В ядре сосредоточена практически вся ДНК эукариотической клетки.

Основными функциями ядра являются:

1) Хранение и передача генетической информации;

2) Регуляция синтеза белка, обмена веществ и энергии в клетке.

Таким образом, ядро является не только вместилищем генетического материала, но и местом, где этот материал функционирует и воспроизводится. Поэтому нарушение любой из этих функций приведет к гибели клетки. Все это указывает на ведущее значение ядерных структур в процессах синтеза нуклеиновых кислот и белков.

Одним из первых ученых продемонстрировавших роль ядра в жизнедеятельности клетки был немецкий биолог Хаммерлинг. В качестве экспериментального объекта Хаммерлинг использовал крупные одноклеточные морские водоросли Acetobularia mediterranea и А. c renulata. Эти близкородственные виды хорошо отличаются друг от друга по форме «шляпки». В основании стебелька находится ядро. В одних экспериментах шляпку отделяли от нижней части стебелька. В результате было установлено, что для нормального развития шляпки необходимо ядро. В других экспериментах стебелек с ядром одного вида водоросли соединялся со стебельком без ядра другого вида. У образовавшихся химер всегда развивалась шляпка, типичная для того вида, которому принадлежало ядро.

Общий план строения интерфазного ядра одинаков у всех клеток. Ядро состоит из ядерной оболочки, хроматина, ядрышек, ядерного белкового матрикса и кариоплазмы (нуклеоплазмы). Эти компоненты встречаются практически во всех неделящихся клетках эукариотических одно- и многоклеточных организмов.

2. Ядерная оболочка, строение и функциональное значение

Ядерная оболочка (кариолемма, кариотека) состоит из внешней и внутренней ядерных мембран толщиной по 7 нм. Между ними располагается перинуклеарное пространство шириной от 20 до 40 нм. Основными химическими компонентами ядерной оболочки являются липиды (13-35%) и белки (50-75%). В составе ядерных оболочек обнаруживаются также небольшие количества ДНК (0-8%) и РНК (3-9%). Ядерные оболочки характеризуются относительно низким содержанием холестерина и высоким - фосфолипидов. Ядерная оболочка непосредственно связана с эндоплазматической сетью и содержимым ядра. С обеих сторон к ней прилегают сетеподобные структуры. Сетеподобная структура, выстилающая внутреннюю ядерную мембрану, имеет вид тонкой оболочки и называется ядерной ламиной. Ядерная ламина поддерживает мембрану и контактирует с хромосомами и ядерными РНК. Сетеподобная структура, окружающая наружную ядерную мембрану, гораздо менее компактна. Внешняя ядерная мембрана усеяна рибосомами, участвующими в синтезе белка. В ядерной оболочке имеются многочисленные поры диаметром около 30-100 нм. Количество ядерных пор зависит от типа клетки, стадии клеточного цикла и конкретной гормональной ситуации. Так чем интенсивнее синтетические процессы в клетке, тем больше пор имеется в ядерной оболочке. Ядерные поры довольно лабильные структуры, т. е. в зависимости от внешнего воздействия способны изменять свой радиус и проводимость. Отверстие поры заполнено сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют ядерным поровым комплексом. Сложный комплекс пор имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит средство построения концептуальных моделей стороны ядра, другой - средство построения концептуальных моделей стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От гранул отходят фибриллярные отростки. Такие фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму, поперек поры. В центре отверстия часто можно видеть так называемую центральную гранулу.

Ядерно-цитоплазматический транспорт

Процесс транслокации субстрата через ядерную пору (для случая импорта) состоит из нескольких стадий. На первой стадии транспортирующийся комплекс заякоривается на обращенной в цитоплазму фибрилле. Затем фибрилла сгибается и перемещает комплекс ко входу в канал ядерной поры. Происходит собственно транслокация и освобождение комплекса в кариоплазму. Известен и обратный процесс - перенос веществ из ядра в цитоплазму. Это в первую очередь касается транспорта РНК синтезируемого исключительно в ядре. Также существует другой путь переноса веществ из ядра в цитоплазму. Он связан с образованием выростов ядерной оболочки, которые могут отделяться от ядра в виде вакуолей, а затем содержимое их изливается или выбрасывается в цитоплазму.

Таким образом, обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями: через поры и путем отшнуровывания.

Функции ядерной оболочки:

1. Барьерная. Эта функция заключается в отделении содержимого ядра от цитоплазмы. В результате оказываются пространственно разобщенными процессы синтеза РНК/ДНК от синтеза белка.

2. Транспортная. Ядерная оболочка активно регулирует транспорт макромолекул между ядром и цитоплазмой.

3. Организующая. Одной из основных функций ядерной оболочки является ее участие в создании внутриядерного порядка.

3. Строение и функции хроматина и хромосом

Наследственный материал может находиться в ядре клетки в двух структурно-функциональных состояниях:

1. Хроматин. Это деконденсированное, метаболически активное состояние, предназначенное для обеспечения процессов транскрипции и редупликации в интерфазе.

2. Хромосомы. Это максимально конденсированное, компактное, метаболически неактивное состояние, предназначенное для распределения и транспортировки генетического материала в дочерние клетки.

Хроматин. В ядре клеток выявляются зоны плотного вещества, которые хорошо окрашиваются основными красителями. Эти структуры получили название "хроматин" (от греч. «хромо» цвет, краска). Хроматин интерфазных ядер представляет собой хромосомы, находящиеся в деконденсированном состоянии. Степень деконденсации хромосом может быть различной. Зоны полной деконденсации называются эухроматином. При неполной деконденсации в интерфазном ядре видны участки конденсированного хроматина, называемого гетерохроматином. Степень деконденсации хроматина в интерфазе отражает функциональную нагрузку этой структуры. Чем "диффузнее" распределен хроматин в интерфазном ядре, тем интенсивнее в нем синтетические процессы. Уменьшение синтеза РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина. Максимальная конденсация конденсированного хроматина достигается во время митотического деления клеток. В этот период хромосомы не выполняют никаких синтетических функций.

В химическом отношении хроматин состоит из ДНК (30-45%), гистонов (30-50%), негистонных белков (4-33%) и небольшого количества РНК. ДНК эукариотических хромосом представляет собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. Репликоны - участки ДНК, которые синтезируются как независимые единицы. Репликоны имеют начальную и терминальную точки синтеза ДНК. РНК представляет собой все известные клеточные типы РНК, находящиеся в процессе синтеза или созревания. Гистоны синтезируются на полисомах в цитоплазме, причем этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами. Хроматиновая нить представляет собой двойную спираль ДНК, окружающую гистоновый стержень. Она состоит из повторяющихся единиц – нуклеосом. Количество нуклеосом огромно.

Хромосомы (от. греч. хромо и сома) - это органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов.

Хромосомы представляют собой палочковидные структуры разной длины с довольно постоянной толщиной. У них имеется зона первичной перетяжки, которая делит хромосому на два плеча. Хромосомы с равными называют метацентрическими , с плечами неодинаковой длины - субметацентрическими. Хромосомы с очень коротким, почти незаметным вторым плечом называются акроцентрическими.

В области первичной перетяжки находится центромера, представляющая собой пластинчатую структуру в виде диска. К центромере прикрепляются пучки микротрубочек митотического веретена, идущие в направлении к центриолям. Эти пучки микротрубочек принимают участие в движении хромосом к полюсам клетки при митозе. Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют ядрышковыми организаторами. Здесь локализована ДНК, ответственная за синтез р-РНК. Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами. В отличие от них разорванные концы хромосом могут присоединяться к таким же разорванным концам других хромосом.

Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные - у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм.

Число хромосом у различных объектов также значительно колеблется, но характерно для каждого вида животных или растений. У некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева. Наименьшее количество хромосом (2 на диплоидный набор) наблюдается у малярийного плазмодия, лошадиной аскариды. У человека число хромосом составляет 46, у шимпанзе, таракана и перца 48, плодовая мушка дрозофила – 8, домашняя муха – 12, сазана – 104, ели и сосны – 24, голубя - 80.

Кариотип (от греч. Карион - ядро, ядро ореха, операторы - образец, форма) - совокупность признаков хромосомного набора (число, размер, форма хромосом), характерные для того или иного вида.

Особи разного пола (особенно у животных) одного и того же вида могут различаться по числу хромосом (различие чаще всего на одну хромосому). Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом. Следовательно, структура кариотипа может быть таксономическим признаком.

Во второй половине 20 века в практику хромосомного анализа стали внедряться методы дифференциального окрашивания хромосом. Считается, что способность отдельных участков хромосом к окрашиванию связана с их химическими различиями.

4. Ядрышко. Кариоплазма. Ядерный белковый матрикс

Ядрышко (нуклеола) - обязательный компонент клеточного ядра эукариотных организмов. Однако имеются некоторые исключения. Так ядрышки отсутствуют в высокоспециализированных клетках, в частности в некоторых клетках крови. Ядрышко представляет собой плотное тельце округлой формы величиной 1-5 мкм. В отличие от цитоплазматических органоидов ядрышко не имеет мембраны, которая окружала бы его содержимое. Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках. Ядрышко является производным хромосомы. В состав ядрышка входят белок, РНК и ДНК. Концентрация РНК в ядрышках всегда выше концентрации РНК в других компонентах клетки. Так концентрация РНК в ядрышке может быть в 2-8 раз выше, чем в ядре, и в 1-3 раза выше, чем в цитоплазме. Благодаря высокому содержанию РНК, ядрышки хорошо окрашиваются основными красителями. ДНК в ядрышке образует большие петли, которые носят название «ядрышковые организаторы». От них зависит образование и количество ядрышек в клетках. Ядрышко неоднородно по своему строению. В нем выявляются два основных компонента: гранулярный и фибриллярный. Диаметр гранул около 15-20 нм, толщина фибрилл – 6-8 нм. Фибриллярный компонент может быть сосредоточен в центральной части ядрышка, а гранулярный - по периферии. Часто гранулярный компонент образует нитчатые структуры - нуклеолонемы толщиной около 0, 2 мкм. Фибриллярный компонент ядрышек представляет собой рибонуклеопротеидные тяжи предшественников рибосом, а гранулы - созревающие субъединицы рибосом. Функция ядрышка заключается в образовании рибосомных РНК (рРНК) и рибосом, на которых происходит синтез полипептидных цепей в цитоплазме. Механизм образования рибосом следующий: на ДНК ядрышкового организатора образуется предшественник рРНК, который в зоне ядрышка одевается белком. В зоне ядрышка происходит сборка субъединиц рибосом. В активно функционирующих ядрышках синтезируется 1500-3000 рибосом в минуту. Рибосомы из ядрышка через поры в ядерной оболочке поступают на мембраны эндоплазматической сети. Количество и образование ядрышек связано с активностью ядрышковых организаторов. Изменения числа ядрышек могут происходить за счет слияния ядрышек или при сдвигах в хромосомном балансе клетки. Обычно в ядрах содержится несколько ядрышек. В ядрах некоторых клеток (ооциты тритонов) содержится большое количество ядрышек. Это явление получило название амплификации. Оно заключается в организации систем управления качеством, что происходит сверхрепликация зоны ядрышкового организатора, многочисленные копии отходят от хромосом и становятся дополнительно работающими ядрышками. Такой процесс необходим для накопления огромного количества рибосом на яйцеклетку. Благодаря этому обеспечивается развитие эмбриона на ранних стадиях даже при отсутствии синтеза новых рибосом. Сверхчисленные ядрышки после созревания яйцевой клетки исчезают.

Судьба ядрышка при делении клеток. По мере затухания синтеза р-РНК в профазе происходит разрыхление ядрышка и выход готовых рибосом в кариоплазму, а затем и в цитоплазму. При конденсации хромосом фибриллярный компонент ядрышка и часть гранул тесно ассоциируют с их поверхностью, образуя основу матрикса митотических хромосом. Этот фибриллярно-гранулярный материал переносится хромосомами в дочерние клетки. В ранней телофазе по мере деконденсации хромосом происходит высвобождение компонентов матрикса. Его фибриллярная часть начинает собираться в мелкие многочисленные ассоциаты - предъядрышки, которые могут объединяться друг с другом. По мере возобновления синтеза РНК предъядрышки превращаются в нормально функционирующие ядрышки.

Кариоплазма (от греч. < карион > орех, ядро ореха), или ядерный сок, в виде бесструктурной полужидкой массы окружает хроматин и ядрышки. Ядерный сок содержит белки и различные РНК.

Ядерный белковый матрикс (ядерный скелет) - каркасная внутриядерная система, которая служит для поддержания общей структуры интерфазного ядра объединения всех ядерных компонентов. Представляет собой нерастворимый материал, остающийся в ядре после биохимических экстракций. Он не имеет четкой морфологической структуры и состоит на 98% из белков.