Геном человека геномные технологии геномика. Министерство здравоохранения и социального развития российской федерации. Геномика - изучение всего генома

Между двумя представителями рода человеческого сходства меньше, чем между двумя различными животными.

Мишель де Монтень

То, что ново в себе, будет понято только по аналогии со старым.

Как уже говорилось, сравнительный метод служит традиционным подходом в старых классических областях биологии (анатомия, эмбриология, цитология). Так, еще Дарвин свою точку зрения о происхождении человека обосновывал с помощью сравнительно-эволюционного метода, указывающего на многочисленное сходство в анатомии и физиологии человека и обезьян.

В последнее время сравнительный подход стал широко и весьма эффективно использоваться в молекулярной биологии и генетике. Мощный толчок этому был дан крупномасштабным секвенированием геномов. Появилось даже новое направление в геномике — сравнительная геномика — сопоставление отдельных генов, групп генов и целых локусов далеко эволюционно отстоящих организмов. Это принципиально важное направление исследований позволяет по-новому решать ряд ключевых вопросов. Рассмотрим некоторые из них.

В настоящее время человечество кроме своей собственной Энциклопедии располагает подобными Энциклопедиями некоторых простейших организмов: кишечной палочки, мухи дрозофилы, дрожжей и червя Caenoharbditis elegans , а также мыши — и отдельными главами из Энциклопедий некоторых других высокоорганизованных организмов (обезьяны, крысы). Сегодня параллельно с секвенированием генома человека идет расшифровка еще около 1000 геномов других животных и растений. ДНКовый текст во всех этих Энциклопедиях написан одними и теми же четырьмя буквами, число которых у бактерий составляет миллионы, у птиц — сотни миллионов и миллиарды у млекопитающих и человека. Поскольку все тексты написаны одинаково, их удается сравнивать между собой. При этом выяснилось, что, несмотря на огромные различия в размерах геномов, число генов (наиболее значимых предложений в текстах) у разных видов организмов не сильно отличается. В этой связи стали говорить даже о неком парадоксе, который получил специальное название G-парадокса (первая буква англ. слова gene — ген). Сейчас этот парадокс объясняют тем, что главное для организма все-таки не общее число генов, а то, как они устроены и как регулируются, какова сложность взаимодействия между продуктами разных генов. «У нас одинаковые гены с кошками и собаками, но они по-разному регулируются», — заявил по этому поводу Крег Вентер, один из главных героев секвенирования человеческого генома. Скорее всего, именно устройство и регуляция работы генов уникальны для человека, делая его «венцом природы». Короче говоря, если ген — это короткое предложение, то из сочетания одних и тех же слов и предложений можно написать как умнейший трактат, так и примитивные детские стишки. Кроме того, важно, как они будут читаться и звучать.

Какими бы уникальными мы не казались сами себе, в нашей ДНК есть довольно много сходства не только с обезьянами и мышами, но даже с маленьким червем C. elegans и мухой дрозофилой. Можно удивляться, но у нас около 50 % генов сходны с таковыми у червя. У человека и мыши еще больше одинаковых генов, хотя в эволюции человек и мышь разошлись уже около 100 миллионов лет назад. В геноме человека на сегодняшний день обнаружено лишь около 300 генов, которых нет у мыши, а общее их число примерно одинаковое. Таким образом, около 99 % генов человека соответствуют генам мыши, причем примерно 80 % из них почти полностью идентичны. Кроме того, до 90 % генов, ответственных за возникновение различных заболеваний, у человека и мыши сходны. Есть, разумеется, и небольшие различия. Так, у мыши гораздо больше генов, отвечающих за обоняние.

Что же касается наших ближайших родственников, то здесь различия еще меньше. Согласно последним данным, в целом геном человека отличается от генома шимпанзе всего лишь максимум на 5 %! Удивительно, но некоторые группы генов (например, гены, ответственные за формирование тела организма) у человека сродни аналогичным группам у биологических видов, возникших еще пятьсот — шестьсот миллионов лет тому назад, во времена так называемого Кембрийского биологического взрыва. Сейчас с нетерпением ожидается тот момент, когда будет полностью секвенирован геном шимпанзе. После этого в сравнительно геномике должен начаться новый очень важный этап. В результате такого сравнения могут быть обнаружены функционально важные мутации, специфические для человека как вида, что в свою очередь откроет новые пути для медицины. Безусловно, эти данные будут также способствовать более полному пониманию процесса эволюции человека.

Сравнения последовательностей ДНК человека с ДНК других организмов уже оказалось очень плодотворным методом поиска новых функционально важных последовательностей в геноме человека. Такой подход был использован и продолжает использоваться для выявления у человека новых белок-кодирующих и не кодирующих белок генов, а также для идентификации потенциальных регуляторных элементов и выяснения механизмов функционировании разных генных наборов. Для этой цели сейчас уже созданы специальные компьютерные программы, позволяющие «вылавливать» в разных геномах эволюционно консервативные области. Все это принципиально важно, поскольку, как уже подчеркивалось выше, мы не можем ставить генетические эксперименты на человеке, но, благодаря сравнительному методу, имеем возможность интерполировать на человека результаты, которые получаются при молекулярно-генетических исследованиях, проводимых на животных.

Так, в силу подобия геномов даже муха дрозофила может быть использована для более полного понимания функций тех или иных человеческих генов, в частности, ответственных за некоторые заболеваний человека. Примером тому может служить изучение гена dFMR-1 мухи, который имеет гомологию с соответствующим геном человека, определяющим синдром ломкости X-хромосомы — тяжелое наследственное нейродегенеративное заболевание. Это исследование позволило заключить, что причина синдрома скорее всего связана с нарушением механизма РНК-интерференции, о котором мы уже говорили выше. И это серьезная «подсказка» для ученых, решающих проблему синдрома ломкости X-хромосомы у людей.

Важно отметить, что когда мы изучаем геном человека, то фактически мы познаем весь живой мир. Геном человека устроен необычайно сложно. Геномы животных и растений чаще всего значительно проще. Поэтому, когда мы узнаем устройство сложного генома, нам будет очень легко от него перейти к изучению простого. А это сулит революцию в таких областях, как ветеринария, селекция растений и животных.

Сравнительная геномика дала ученым новый подход к пониманию вроде бы навсегда скрытого во мраке веков процесса эволюции и его механизмов. Так, например, проведенные сравнения геномов разных видов животных и человека показали наличие определенных тенденций в эволюции. Одна из них заключается в увеличении количества интронов в процессе эволюционного развития у человека, то есть эволюция как бы сопряжена с «разбиением» генома на отдельные функционально значимые фрагменты: на единицу длины ДНК приходится все меньше информации о структуре белков и РНК (экзоны) и возникает все больше участков, не имеющих пока ясного функционального значения (интроны). Проведенные исследования позволяют считают, что природа совершенствовала млекопитающих не столько посредством умножения разнообразия их генов, сколько путем постепенного копирования, модификации и комбинации уже существующих генов, а также путем изменения регуляции экспрессии генов. Специфика и разнообразие строения и функционирования генетического аппарата велики даже среди эукариот. В то же время существует множество общих принципов и механизмов, и результаты их изучения на одних объектах часто с успехом могут переноситься на другие, включая и человека.

Весьма интересные результаты были получены, в частности, при сравнении распределения по хромосомам сходных последовательностей ДНК человека и других животных. Приведем лишь один пример. Как уже указывалось, между геномами человека и мыши имеется большое сходство. На рис. 37 на цветной вклейке изображено расположение в разных хромосомах мыши сходных сегментов отдельных хромосом человека. Глядя на этот рисунок, мы можем увидеть, что участки одних и тех же хромосом человека распределены во множестве хромосом мыши. Это справедливо и наоборот. А что это значит? Это говорит нам о тех путях, по которым шла эволюция млекопитающих (ведь мышь и человек млекопитающие). Тщательно проанализировав картину, изображенную на рис. 37, ученые установили, что на границах разных участков ДНК мыши, которые обнаруживаются в составе ДНК человека, содержатся различные подвижные генетические элементы, тандемные повторы и другие «горячие точки», по которым, вероятно, и шла перестройка (рекомбинация) в ходе многовекового процесса эволюции животных организмов.

Рис. 37 . Генетическое сходство (гомология) хромосом человека и мыши. Разными цветами и номерами на хромосомах мыши отмечены нуклеотидные последовательности человеческих хромосом, содержащие сходные сегмент.

Сравнительная геномика показала, что гены, одинаковые по эволюционному происхождению и выполняемой функции (гомологичные), часто оказываются сцепленными с одними и теми же гомологичными генами у разных видов. На основании этого предсказывают вероятный район локализации генов у одних видов, если известно, с какими генами они сцеплены у других, т. е. проводят «сравнительное картирование». Все это важно в связи с тем, что правила чисел и относительное положение генов на хромосоме не всегда предопределяют законы их функционирования. Так, белковый состав многих специализированных клеток мыши, крысы и человека выглядит похожим, хотя сами гены разбросаны на хромосомах по-разному.

Итак, сравнительная геномика позволяет нам судить о механизмах и путях эволюции геномов и даже на новом уровне воссоздавать классификацию всего животного мира. Все это и есть предмет еще одного нового направления — эволюционной геномики. Ее венцом должно стать создание определенной четкой системы живых организмов, в некотором смысле подобной таблице Менделеева.

Благодаря использованию методов и подходов сравнительной и эволюционной геномики уже получены сенсационные результаты, касающиеся такого сложного и интересного вопроса, как происхождение человека и эволюция его генома. Подробнее об этом и пойдет речь в следующей части книги.

| |
Немного фактов на грани с фантастикой Часть III. Происхождение и эволюция генома человека

Геномикой принято называть одну из ветвей молекулярной биологии. Ее основная задача заключена в так называемом секвенировании геномов - изучении нуклеотидных последовательностей ДНК и РНК. Не нужно путать слова генетика и геномика. Генетика занимается изучением механизмов наследственности и изменчивости и, а геномика призвана применять на практике полученные знания.

Из истории науки

Как особое направление, геномика сформировалась в 1980-1990 годах наряду с появлением первых проектов по секвенированию (молекулярного анализа) геномов отдельных видов живых организмов.

Структура геномики

В современной геномике бытует множество подразделов:

  • сравнительная или эволюционная геномика, она основывается на сравнении организации и содержимого геномов всевозможных живых организмов;
  • функциональная геномика - детально изучает функции генов, их воздействие на активность генов;
  • структурная геномика занимается секвенированием, молекулярным анализом ДНК, на основе которого создаются и могут сравниваться геномные карты.

Зачем нужна геномика

Большое количество геномов разнообразных микроорганизмов (в основном, патогенных) удалось расшифровать. Это позволяет изыскивать здесь гены-мишени лекарств и изготовлять новые лекарственные препараты.

Геномику воспринимают, как необъемлемую, необходимую часть общей биологии. Она способна вносить свой немалый вклад в развитие биотехнологии, сельского хозяйства, здравоохранения.

В одной из больниц Висконсина малыш в возрасте трех лет длительное время ставил врачей в тупик. У этого ребенка кишечник отек, был практически полностью пронизан абсцессами. Этот ребенок к трем годам пережил больше ста хирургических операций. Малышу привели полный сиквенс кодирующих участков его ДНК, выявили виновника заболевания – белок XIAP, который участвует в сигнальных цепях запрограммированной клеточной смерти, играет очень важную роль в иммунной системе. Благодаря постановке диагноза физиологи рекомендовали провести трансплантацию костного мозга. Малыша удалось спасти.

Еще один случай был связан с нетипичной раковой болезнью у тридцати девятилетней женщины, которая страдала от острой формы промиелоцитарной лейкемии. При проведении стандартных методов диагностики заболевание выявить не удавалось. Но при выполнении расшифровки и анализа генома раковых клеток удалось выяснить, что крупный участок пятнадцатой хромосомы переместился на семнадцатую, что провоцировало определенное генное взаимодействие. Больной назначили адекватное лечение.

Разделы геномики

Определение генома и геномики.

Введение в геномику.

Прежде всего, определим понятие «геном». Существует несколько определений генома. В энциклопедическом словаре «Генетика» Н.А.Картель и др. даётся два определения генома. Во-первых, под геномом понимают совокупность гаплоидного набора хромосом данного вида организмов. И, во-вторых, - это весь генетический материал отдельного вируса, клетки или организма не являющегося аллоплоидным. В нашем изложении мы будем исходить из того, что геном клетки это вся совокупность ДНК, находящаяся в ядре и митохондриях (пластидах) этой клетки или организма. Такое определение часто используется в работах связанных с изучением генома.

Строение и функцию генома изучает специальная наукагеномика .

Успехи в изучении генома человека стали наиболее ощутимы в связи с разработкой и последующем выполнением международного проекта «Геном человека». Этот международный проект объединил усилия сотен учёных из разных стран и осуществлялся с 1989 г по 2005 г. Главные направления проекта – картирование генов (определение локализации генов в хромосомах) и секвенирование ДНК или РНК (порядок расположения в ДНК или РНК нуклеотидов). Инициатором этого движения с самого начала стал лауреат Нобелевской премии учёный Дж. Уотсон. В России таким энтузиастом стал академик Баев А.А. На проект было затрачено свыше 6 млрд долларов. Материальные затраты России были настолько скромными, что их не учитывают при общем подсчёте издержек. Несмотря на это российские учёные проводили исследования по картированию 3,4,13 и 19 хромосоме. Проект позволил полностью расшифровать последовательность нуклеотидов в геноме человека. Фактически это был первый этап – структурный. Второй этап, который назвали функциональный, будет связан с расшифровкой функции гена. Полученные результаты в области исследования генома легли в основы выпущенного в США Ч. Кэнтором и К. Смит в 2000 году первого учебника для ВУЗов «Геномика».

Геномика подразделяется на пять самостоятельных разделов.

Структурная геномика изучает последовательность нуклеотидов в геноме, определяет границы и строение генов, межгенных участков, промоторов, энхансеров и др., т.е. фактически принимает участие в составлении генетических карты организма. Подсчитано, что геном человека состоит из 3,2 млрд нуклеотидов.

Функциональная геномика идентифицирует функцию каждого гена и участка генома, их взаимодействие в клеточной системе. Одна из важнейших задач геномики создать, так называемую «генную сеть» - взаимосвязанную работу генов. Например, генная сеть системы кроветворения включает в себя работу не менее 500 генов. Они не только взаимосвязаны между собой, но связаны и с другими генами.


Сравнительная геномика изучает сходства и различия в организации геномов разных организмов.

Эволюционная геномика объясняет пути эволюции геномов, происхождение генетического полиморфизма и биоразнообразия, роль горизонтального переноса генов. В применении к человеку, также как и к любому организму, можно сказать, что эволюция человека – это эволюция генома.

Медицинская геномика решает прикладные вопросы клинической и профилактической медицины на основе знания геномов человека и патогенных организмов.

Геномика человека является основой молекулярной медицины и её достижения используются при разработке эффективных методов диагностики, лечения и профилактики наследственных и не наследственных заболеваний. Если раньше предполагали, что наследственная патология, связана с определёнными генами или регуляторными зонами, то сейчас, всё большее внимание привлекают нуклеотидные последовательности, располагающиеся в межгенных промежутках. Они долгое время считались «молчащими». В настоящее время накапливается всё больше сведений об их влиянии на экспрессию генов.

Исследования в области генома ещё раз подтвердили необходимость индивидуального подхода к профилактике и лечению заболеваний. Значительный интерес представляют для медицины исследования связанные с составлением «генной сети» - схем взаимодействия генов между собой на уровне белковых продуктов. Эти исследования способствовали созданию в рамках геномики новой наукипротеомики , которая изучает белковый пейзаж клетки в различных режимах функционирования генов. Полученные результаты однозначно показывают целесообразность индивидуального подхода к лечению заболевания. Сейчас протеомика – самостоятельная наука, тесно связанная с геномикой.

В этой связи следует подчеркнуть, что тезис «лечить не болезнь, а больного» получил существенное подтверждение в многочисленных исследованиях генома и белков. Основываясь на них приоритетность этого положения в медицинской практике перестала вызывать сомнения.

Хотя геномика как наука появилась сравнительно недавно, но в её становлении уже можно различить несколько этапов.

1 этап . 1900 – 1940 г. На этом этап изучаются менделирующие признаки человека. Метод исследование – генеалогический анализ . Систематическое изучение генома человека фактически началось с развития менделевского анализа наследственных признаков у животных в начале 20 века. В применении к человеку это был генеалогический метод исследования наследственных признаков. На этом этапе учёные в основном выявили менделирующие признаки человека и вплотную подошли к описанию групп сцепления . Обнаружено около 400 менделирующих признаков человека и 4 группы сцепления. Начиная с 50-х годов прошлого века, процесс открытия групп сцепления и менделирующих признаков замедляется. В настоящее время генеалогический метод изучения генома человека в чистом виде себя исчерпал.

2 этап. 1940 – 1980 г. Этап изучения групп сцепления . Методы изучения – генеалогический, цитогенетический и метод гибридизации соматических клеток. Существенный прогресс цитогенетики человека, особенно генетики соматических клеток в 60-х годах в комплексе с генеалогическим подходом поставил изучение генома человека на новые теоретические основы. Внедрение в практику научных исследований биохимических и иммунологических методов существенно ускорило не только открытие новых менделирующих признаков, но и облегчило процесс расшифровки в геноме человека новых групп сцепления генов. К сожалению, знание групп сцепления всё же не позволяет определить точную локализацию генов в хромосомах. А последнее, необходимо для успешного развития генетической инженерии и связанных с ней практических проблем в области медицины, сельского хозяйства и т.д. Поэтому начинают резко увеличиваться число исследований в области составления карт (картирования) генов.

3 этап. 1980 по сегодняшний день. Этап изучения локализации генов в геноме и расшифровка их нуклеотидной последовательности . Методу изучения – биохимические, иммунологические. Этот этап начал формироваться в 1980-х годах с развитием молекулярно-генетических методов и технологии генной инженерии. Процесс познания генома углубился до выделения гена в чистом виде и его секвенирования (установления нуклеотидной последовательности). В США и Великобритании были разработаны и внедрены автоматические приборы по секвенированию геномов. Их назвали геномотроны. В них осуществляется более 100 000 полимеразных реакций в час. Большую роль на этом этапе играют вычислительная техника и информационные системы. Благодаря им, решаются вопросы накопления информации из разных источников, хранения её и оперативное использование исследователями разных стран.

К 1980 г. был полностью картирован геном одной из бактерий, в 1986 году закончено картирование ДНК дрожжевой клетки, в 1998 году полностью картирован геном круглого червя и т.д. К настоящему времени полностью завершено определение последовательности оснований в ДНК более чем 50 представителей животного мира (в основном с малым размером генома – возбудители пневмонии, сифилиса, риккетсии, спирохеты, дрожжей, круглого червя и т.д.). Завершается аналогичная работа и в отношении генома человека. Описано более 19 тысяч различных заболеваний человека, из них около 3 тысяч – наследственные болезни.

Одна из интересных инициатив в области геномики заключается в создании искусственной ДНК, которая содержала бы минимальный набор генов, необходимых клетке для автономного существования. Подсчитано, что для этого потребуется около 350 - 450 генов.

В настоящее время вся нуклеотидная последовательность генома человека расшифрована, решается следующая задача – изучение однонуклеотидных вариаций ДНК в разных органах и клетках отдельных индивидуумов и выявление генетических различий между индивидуумами. Это позволит перейти к созданию генных портретов (карт) людей. Это с одной стороны поможет успешнее лечить заболевания, с другой ставит ряд серьёзных вопросов. Например, страховые компании могут использовать сведения из генетической карты подающего на страховку человека несущего рецессивный ген болезни, для взвинчивания цен при его страховании.

С другой стороны предполагается, что на следующем этапе развития геномики значительное место займут исследования связанные с расшифровкой функциональных характеристик всех кодирующих и не кодирующих областей генома в приложении к индивидууму.

Индивидуальный подход к изучению структуры и функции генома людей, скорее всего окажется ведущим в развитии этой области генетики.

Международный проект «Геном человека», в котором участвовало несколько тысяч учёных, закончил функционировать в 2000 г. Однако исследования в этом направлении не прекращаются. Это был один из самых дорогостоящих проектов в истории цивилизации, его стоимость более 500 миллионов долларов в год.

К сожалению, Россия приостановила свой вклад в международный проект « Геном человека».

Это часть 1 истории геномики, которая называется "геномные проекты". В этой части я постараюсь научно-популярно рассказывать о том, как появились первые методы чтения генетических последовательностей, в чем они заключались и как геномика двигалась от чтения отдельных генов к чтению полных геномов, в том числе полных геномов конкретных людей.

Вскоре после открытия Уотсона и Крика (Рис.1) рождается наука геномика. Геномика - это наука об исследовании геномов организмов, которая включает интенсивное чтение полных последовательностей ДНК (секвенирование) и их нанесение на генетические карты. Это наука так же рассматривает взаимодействия между генами и аллелями генов и их разнообразие, закономерности в эволюции и устройства геномов. Развитие этой области происходило так стремительно, что еще совсем недавно текстовые редакторы вроде Microsoft Word не знали слова “геном” и пытались исправить его на слово “гном”.

Рис. 1 Джеймс Уотсон (слева) и Френсис Крик (справа) - ученые открывшие двойную спираль ДНК

Самый первый прочтенный ген был ген оболочки бактериофага MS2, изученный в лаборатории Валтера Файерса в 1972-ом году . В 1976-ом были известны и другие гены бактериофага - его репликаза, ген отвечающий за размножение вирусных частиц . Короткие молекулы РНК тогда уже читались сравнительно легко, но крупные молекулы ДНК читать толком еще не умели. К примеру, полученная в 1973-ем году Вальтером Гилбертом и Алленом Максам последовательность участка гена лактозного оперона, длинной в 24 буквы, рассматривалась как существенный прорыв в науке. Вот эта последовательность:

5"—TGGAATTGTGAGCGGATAACAATT 3"
3"—ACCTTAACACTCGCCTATTGTTAA 5"

Первые техники чтения ДНК были очень неэффективными и использовали радиоактивные метки для ДНК и химические методы, чтобы различить нуклеотиды. Например, можно было взять ферменты, которые разрезают нуклеотидную последовательность с разной вероятностью после разных букв. Молекула ДНК состоит из 4-ех букв (нуклеотидов) A, T, G и С, которые входят в состав двойной анти-параллельной (две цепи направлены в противоположные стороны) спирали. Внутри этой спирали нуклеотиды находятся друг напротив друга в соответствии с правилом комплементарности: напротив А в другой цепи стоит T, напротив G стоит С и наоборот.

Гилберт и Максам использовали 4 типа ферментов. Один разрезал после А или G, но лучше после A (A>G), второй разрезал лучше после G (G>A), третий после C, а четвертый после С или T (С+T) . Реакция проводилась в 4-ех пробирках с каждым типом ферментов, а затем продукты помещали на гель. ДНК - заряженная молекула и при включении тока бежит от минуса к плюсу. Маленькие молекулы бегут быстрее, поэтому разрезанные молекулы ДНК выстраиваются по длине. Глядя на 4 дорожки геля, можно было сказать в какой последовательности расположены нуклеотиды.

Прорыв в области секвенирования ДНК случился, когда английский биохимик Фредерик Сенгер в 1975-ом году предложил, так называемый “метод терминации цепи” для чтения последовательностей ДНК. Но прежде чем рассказать об этом методе, необходимо ввести в курс процессов происходящих при синтезе новых молекул ДНК. Для синтеза ДНК необходим фермент - ДНК-зависимая ДНК полимераза, которая способен достраивать одноцепочечную молекулу ДНК до двухцепочечной. Для этого ферменту необходима “затравка” - праймер, короткая последовательность ДНК, способная связаться с длинной одноцепочечной молекулой, которую мы хотим достроить до двухцепочечной. Так же необходимы сами нуклеотиды в форме нуклеотидтрифосфатов и некоторые условия, такие как определенное содержание ионов магния в среде и определенная температура. Синтез всегда идет в одном направлении от конца называемого 5’ к концу называемому 3’. Разумеется, для чтения ДНК необходимо большое количество матрицы - то есть копий той ДНК, которую собираются читать.

В 1975-ом году Сенгер придумал следующее. Он брал специальные (терминирующие) нуклеотиды, которые, присоединившись к растущей цепи молекулы ДНК, мешали присоединению последующих нуклеотидов, то есть “обрывали” цепь. Далее он брал 4 пробирки, в каждую из которых добавлял все 4 типа нуклеотидов и один тип терминирующих нуклеотидов в небольшом количестве . Таким образом, в пробирке, где находился терминирующий нуклеотид “А” синтез каждой новой молекулы ДНК мог оборваться в любом месте, где должна была встать “А”, в пробирке с терминирующей “G” - в любом месте, где должна встать G и так далее. На гель наносились 4 дорожки из 4-ех пробирок (Рис. 2) и снова самые коротки молекулы “убегали” вперед, а самые длинные оставались в начале, а по отличиям в полосах можно было сказать, какой нуклеотид следует за каким. Чтобы увидеть полосы, один из четырех нуклеотидов (A, T, G или C) метился, без изменения химических свойств, с использованием радиоактивных изотопов.

Рис. 2 Метод Сангера. Показаны три серии из 4-ех дорожек.

С помощью этого метода был прочитан первый геном, основанный на ДНК - геном бактериофага ϕX174, длинной 5,386 нуклеотидов (геном фага MS2, прочитанный ранее был на основе РНК и имел геном длинной 3,569 нуклеотидов).

Метод Сенгера был существенно улучшен в лаборатории Лероя Худа, где в 1985-ом году радиоактивную метку смогли заменить светящейся, флюрисцентной меткой . Это дало возможность создать первый автоматический секвенатор: каждая молекула ДНК теперь была покрашена разным цветом в зависимости от того, какой была последняя буква (меченый цветом нуклеотид, обрывающий цепь). Фрагменты разделялись на геле по размерам и машина автоматически считывала спектр свечения поступающих полос, выдавая результаты на компьютер. В результате такой процедуры получается хроматограмма (Рис. 2), по которой легко установить последовательность ДНК длинной до 1000 букв, с очень небольшим количеством ошибок.



Рис. 3 Пример хроматограммы, на современном секвенторе, использующий метод обрывания цепи Сангера и светящуюся метку.

На многие годы улучшенный метод Сенгера станет основным методом массового секвенирования геномов и будет использован для многих проектов полных геномов, а Сенгер в 1980-ом получит вторую нобелевскую премию по химии (первую он получил еще в 1958-ом за прочтение аминокислотной последовательности белка инсулина - первого прочитанного белка). Первым полным геномом клеточного организма стал геном бактерии, вызывающей некоторые формы пневмонии и менингита - Haemophilus influenzae в 1995-ом году. Геном этой бактерии имел длину 1,830,137 нуклеотидов. В 1998-ом году появляется первый геном многоклеточного животного, круглого червяка Caenorhabditis elegans (Рис. 4 справа), с 98 миллионами нуклеотидов, а затем в 2000-ом году появляется первый растительный геном - Arabidopsis thaliana (Рис. 4 слева), родственницы хрена и горчицы. Геном этого растения имеет длину 157 миллионов нуклеотидов. Скорость и масштабы секвенирования росли с изумительной скоростью и появляющиеся базы данных нуклеотидных последовательностей пополнялись все быстрее и быстрее.


Рис. 4 Arabidopsis thaliana (слева) и Caenorhabditis elegans (справа).

Наконец, настал черед генома млекопитающих: геномы мыши и человека. Когда в 1990-ом году Джеймс Уотсон возглавил проект чтения полного генома человека в Институте Национального Здоровья (NIH) в США многие ученые скептически относились к этой идее. Подобный проект требовал колоссальных вложений денег и времени и, учитывая ограниченные возможности существовавших машин для чтения геномов, многим казался просто не выполнимым. С другой стороны проект обещал революционные изменения в медицине и понимании устройства человеческого организма, но и здесь были свои проблемы. Дело в том, что в тот момент не существовало какой-либо точной оценки количества генов у человека. Многие полагали, что сложность устройства человеческого организма указывает на наличие у него сотен тысяч генов, а может и несколько миллионов, а, следовательно, разобраться в таком количестве генов, даже если их последовательности удастся прочитать, будет непосильной задачей. Именно в наличии большого количества генов многие предполагали принципиальное отличие человека от других животных - представление, впоследствии опровергнутое проектом генома человека.

Сама идея прочитать геном человека родилась в 1986-ом году по инициативе Департамента Энергии США, который впоследствии финансировал проект вместе с NIH. Стоимость проекта была оценена в 3 миллиарда долларов, а сам проект был рассчитан на 15 лет при участии в проекте целого ряда стран: Китай, Германия, Франция, Великобритания и Япония. Для чтения генома человека использовались так называемые “искусственные бактериальные хромосомы” (BAC - bacterial artificial chromosome). При этом подходе геном разрезаются на множество частей, длинной примерно в 150000 тысяч нуклеотидов. Эти фрагменты встраивают в искусственные кольцевые хромосомы, которые встраиваются в бактерии. С помощью бактерий эти хромосомы размножаются, и ученые получают множество копий одного и того же фрагмента молекулы ДНК. Каждый такой фрагмент затем читается отдельно, а прочитанные куски по 150000 нуклеотидов наносятся на карту хромосомы. Данный метод позволяет довольно точно секвенировать геном, однако требует очень больших затрат времени.

Но проект генома человека двигался крайне медленными темпами. Ученый Крейг Вентер и его компания Celera Genomics, основанная в 1998-ом году, сыграли примерно такую же роль в истории геномики, как Советский Союз повлиял на полет американцев на луну. Вентер заявил, что его компания закончит проект генома человека раньше, чем завершится государственный проект. На проект потребуется всего 300 миллионов долларов - лишь малую фракцию от затрат государственного проекта, используя новую технологию секвенирования “whole genome shotgun” - чтение случайных коротких фрагментов генома. Когда Френсис Коллинс, сменивший в 1993-ем году Джеймса Уотсона на посту руководителя проекта по чтению генома человека, узнал о намерениях Вентера, он был шокирован. “Мы сделаем геном человека, а вы можете сделать мышку ” - предложил Вентер. Научное сообщество всполошилось, и на то был ряд причин. Во-первых, Вентер обещал закончить свой проект в 2001-ом году, на 4 года раньше срока, намеченного для государственного проекта. Во-вторых, компания Celera Genomics собиралась заработать на проекте, создав абсолютную базу данных, которая была бы платной для коммерческих фармоцевтических компаний.

В 2000-ом году Селера доказала эффективность своего метода секвенирования, опубликовав геном плодовой мушки дрозофилы вместе с лабораторией генетика Джеральда Рубина (ранее whole genome shotgun использовался для прочтения первого генома бактерии, но мало кто верил, что этот метод пригоден для крупных геномов). Именно такой пинок со стороны коммерческой компании стимулировал разработку улучшенных и применение более современных методов чтения геномов в проекте генома человека. В 2001-ом году был опубликован предварительный вариант генома со стороны государственного геномного проекта и Селеры . Тогда была сделана предварительная оценка количества генов в геноме человека, 30-40 тысяч. В 2004-ом году вышла окончательная версия генома , почти на два года раньше, чем следовало по плану. В последней статье было сказано, что количества генов у человека предположительно составляет лишь 20-25 тысяч. Это число сравнимо с другими животными, в частности с червяком C. elegans .

Практически никто не угадал, что количество генов, обеспечивающих работу нашего организма, может быть столь мало. Позже стали известны и другие подробности: геном человека имеет длину около трех миллиардов нуклеотидов, большую часть генома составляют не кодирующие последовательности, в том числе всевозможные повторы. Лишь небольшая часть генома действительно содержит гены - участки ДНК, с которых считываются функциональные молекулы РНК. Интересный факт, что по мере увеличения знаний о геноме человека, число предполагаемых генов только сокращалось: многие потенциальные гены оказывались псевдогенами (не работающими генами), в других случаях несколько генов оказывались частью одного и того же гена.

Дальнейшие темпы секвенирования возрастали экспоненциально. В 2005-ом году опубликован геном Шимпанзе , который подтвердил потрясающее сходство между обезьянами и человеком, которое видели еще зоологи прошлого. К 2008-ому году были полностью прочитаны геномы 32-ух позвоночных, включая кошку, собаку, лошадь, макаку, орангутанга и слона, 3 генома беспозвоночных вторичноротых, 15 геномов насекомых, 7 геномов червяков и сотни геномов бактерий.

Наконец в 2007-ом человечество приблизилась к возможности секвенирования геномов индивидуальных людей. Первым человеком, для которого прочитали полный индивидуальный геном, стал Крейг Вентер (Рис. 4). При этом геном был прочитан так, что можно было сравнить хромосомы Вентера, доставшиеся ему от обоих родителей. Так было выяснено, что между одним и другим набором хромосом внутри одного человека существует около трех миллионов однобуквенных нуклеотидных отличий, не считая огромного количества крупных варьирующих участков. Год спустя опубликован полный диплоидный геном Джеймса Уотсона (Рис. 5). Геном Уотсона содержал 3.3 миллиона однобуквенных замен по сравнению с аннотированным геномом человека, из которых более 10000 вели к изменением в белках, которые кодируют его гены. Геном Уотсона обошелся в 1 миллион долларов, то есть цена на чтение геномов упала более чем в 3000 раз за 10 лет, но и это не предел. Сегодня перед учеными стоит задача ‘1 геном - 1000 $ - 1 день” и она уже не кажется невыполнимой с появлением новых технологий секвенирования. О них расскажет следующая часть "истории".


Рис. 5 Джеймс Уотсон и Крейг Вентер - первые люди с индивидуальными прочитанными геномами.

  1. Watson J, Crick F: A Structure for Deoxyribose Nucleic Acid . Nature 1953(171):737-738.
  2. Min Jou W, Haegeman G, Ysebaert M, Fiers W: Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 1972, 237(5350):82-88.
  3. Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A et al: Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 1976, 260(5551):500-507.
  4. Gilbert W, Maxam A: The nucleotide sequence of the lac operator. Proc Natl Acad Sci U S A 1973, 70(12):3581-3584.
  5. Maxam AM, Gilbert W: A new method for sequencing DNA. Proc Natl Acad Sci U S A 1977, 74(2):560-564.
  6. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977, 74(12):5463-5467.
  7. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE: Fluorescence detection in automated DNA sequence analysis. Nature 1986, 321(6071):674-679.
  8. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269(5223):496-512.
  9. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998, 282(5396):2012-2018.
  10. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408(6814):796-815.
  11. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al: The genome sequence of Drosophila melanogaster. Science 2000, 287(5461):2185-2195.
  12. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al: The sequence of the human genome. Science 2001, 291(5507):1304-1351.
  13. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al: Initial sequencing and analysis of the human genome. Nature 2001, 409(6822):860-921.
  14. Finishing the euchromatic sequence of the human genome. Nature 2004, 431(7011):931-945.
  15. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005, 437(7055):69-87.
  16. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G et al: The diploid genome sequence of an individual human. PLoS Biol 2007, 5(10):e254.
  17. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT et al: The complete genome of an individual by massively parallel DNA sequencing. Nature 2008, 452(7189):872-876.
Часть 2 - здесь

Геномика - изучение всего генома

Последние достижения в области секвенирова-ния и развитие технических средств для обработки большого количества клонов в библиотеке генов позволили ученым исследовать сразу весь геном организма. Сейчас определены полные последовательности многих видов, в том числе большинства так называемых модельных генетических организмов, таких как Е. coli; круглого червя Caenorhabditis elegans; и, конечно, классического объекта генетики, плодовой мушки Drosophila melanogaster. В 1990-х годах, несмотря на ряд неурядиц и разногласий, был начат проект по исследованию человеческого генома («Геном человека»), средства на который выделил Национальный институт здоровья. В феврале 2001 года большая группа исследователей во главе с Дж. Крэй-гом Вентером из частной лаборатории «Селера Дже-номикс» сделали заявление о предварительной расшифровке человеческого генома. Результат их работы был опубликован 16 февраля 2001 года в журнале «Science».

Другая версия, которую представила группа из Международного консорциума по секвенированию человеческого генома, была напечатана 13 февраля 2001 года в журнале «Nature».

Временем зарождения геномики можно считать середину XX века, когда генетики составили карты всех хромосом модельных организмов, основываясь на частоте рекомбинаций (см. гл. 8). Однако на этих картах были показаны лишь те гены, для которых были известны мутантные аллели, и поэтому полными такие карты назвать нельзя. Полное сек-венирование ДНК позволяет выявить местонахождение всех генов организма, а также установить последовательность оснований между ними.

Геномика делится на структурную и функциональную. Структурная геномика ставит целью выяснить, где именно в хромосомной ДНК расположены те или иные гены. Компьютерные программы распознают типичные для генов начала и концы, отбирая те последовательности, которые, вероятнее всего, и являются генами. Такие последовательности называют открытой рамкой считывания (open reading frame, OFR). Те же компьютерные программы могут опознавать и типичные интроны в OFR-nocледовательностях. После того как интроны из потенциального гена вычленены, по оставшемуся коду компьютер определяет последовательность аминокислот в белке. Затем эти потенциальные белки сравнивают с теми белками, функции которых уже известны и последовательности которых уже занесены в базу данных. Благодаря такому роду программ был установлен так называемый эволюционный консерватизм: то, что для большинства генов в разных организмах имеются схожие гены. С позиций эволюционного развития такое сходство объяснимо: если белок какого-то одного биологического вида хорошо приспособлен для своих функций, то его ген передается в том же виде или с небольшими изменениями к видам, происходящим от начального. Эволюционный консерватизм позволяет опознавать гены, родственные данному гену в других организмах. Сравнив полученный ген с уже известными, зачастую можно определить и его функцию, обязательно проверив ее в последующих экспериментах.

После определения всех потенциальных генов приступают к составлению генетической карты. Генетическая карта человека - довольно запутанная и пестрая диаграмма, так как каждый ген отмечают определенным цветом в зависимости от его функции, устанавливаемой в сравнении с другими известными генами. Большинство генов человека, как и вообще гены всех эукариот, имеют большие интроны. По приблизительным оценкам, среди опубликованных последовательностей около трети или четверти приходится на интроны. Любопытно, что только около 1,5% всего генома человека (около 2,9 х 10 9 пар оснований) содержат последовательности (экзоны), кодирующие белки. Кроме того, похоже, что эта ДНК содержит только 35 000-45 000 генов, а это меньше предсказанного. Нам еще предстоит понять, как относительно малое количество генов кодирует такой сложный организм.

Количество копий повторяющейся ДНК у разных людей неодинаково, поэтому их можно использовать для установления личности, в том числе и в судебной медицине.

Функциональная геномика - это исследование функций генов на уровне всего генома. Хотя потенциальные гены можно определить по сходству с генами, выполняющими известные функции в других организмах, все догадки следует проверять на примере изучаемого организма. В некоторых модельных организмах, например в пищевых дрожжах, можно систематически отключать функцию генов по очереди. Выключение гена происходит посредством замены его функциональной формы стертой формой на особом векторе. Затем получают штамм с выключенным геном и оценивают его фенотип. В ходе продолжающейся программы по анализу генома пищевых дрожжей по очереди было выключено несколько тысяч генов.

Другой метод функциональной геномики заключается в том, что изучают механизм транскрипции на уровне всего генома. Данный метод основан на предположении, что большинство биологических явлений представляют собой сложные процессы с участием многих генов. Особый интерес у исследователей вызывают процессы, связанные с развитием организма, о которых мы упоминали в гл. 11. Если транскрипцию генов изучать в разных условиях роста, то можно составить представление о полных генетических путях развития организма.

Но как можно изучать транскрипцию на уровне всего генома? Опять-таки в этом ученым помогают новые технологии. ДНК каждого гена в геноме или некоторой части генома помещают на поверхности небольших стеклянных пластин, расположенных по порядку. Потом их подвергают воздействию со стороны всех видов мРНК, обнаруженных в клетке данного организма. ДНК на пластинках получают двумя способами. При одном способе все мРНК подвергаются обратной транскрипции, чтобы получить короткие комплементарные молекулы ДНК, соответствующие одному гену. При другом способе гены (или части генов) синтезируются по одному основанию за раз на определенных участках пластин. Синтез осуществляют роботы, открывающие и закрывающие поверхность стекла в определенном порядке. Пластинки с геномом многих организмов можно приобрести в химических компаниях.