Падежи и спряжения таблица. Что такое склонение: сколько падежей в русском языке. Как отличить родительный и винительный падежи

С недавних пор существует элегантная формула для вычисления числа Пи, которую в 1995 году впервые опубликовали Дэвид Бэйли, Питер Борвайн и Саймон Плафф:

Казалось бы: что в ней особенного — формул для вычисления Пи великое множество: от школьного метода Монте-Карло до труднопостижимого интеграла Пуассона и формулы Франсуа Виета из позднего Средневековья. Но именно на эту формулу стоит обратить особое внимание — она позволяет вычислить n-й знак числа пи без нахождения предыдущих. За информацией о том, как это работает, а также за готовым кодом на языке C, вычисляющим 1 000 000-й знак, прошу под хабракат.

Как же работает алгоритм вычисления N-го знака Пи?
К примеру, если нам нужен 1000-й шестнадцатеричный знак числа Пи, мы домножаем всю формулу на 16^1000, тем самым обращая множитель, стоящий перед скобками, в 16^(1000-k). При возведении в степень мы используем двоичный алгоритм возведения в степень или, как будет показано в примере ниже, возведение в степень по модулю . После этого вычисляем сумму нескольких членов ряда. Причём необязательно вычислять много: по мере возрастания k 16^(N-k) быстро убывает, так что, последующие члены не будут оказывать влияния на значение искомых цифр). Вот и вся магия — гениальная и простая.

Формула Бэйли-Борвайна-Плаффа была найдена Саймоном Плаффом при помощи алгоритма PSLQ , который был в 2000 году включён в список Top 10 Algorithms of the Century . Сам же алгоритм PSLQ был в свою очередь разработан Бэйли. Вот такой мексиканский сериал про математиков.
Кстати, время работы алгоритма — O(N), использование памяти — O(log N), где N — порядковый номер искомого знака.

Думаю, уместно будет привести код на языке Си, написанный непосредственно автором алгоритма, Дэвидом Бэйли:

/* This program implements the BBP algorithm to generate a few hexadecimal digits beginning immediately after a given position id, or in other words beginning at position id + 1. On most systems using IEEE 64-bit floating- point arithmetic, this code works correctly so long as d is less than approximately 1.18 x 10^7. If 80-bit arithmetic can be employed, this limit is significantly higher. Whatever arithmetic is used, results for a given position id can be checked by repeating with id-1 or id+1, and verifying that the hex digits perfectly overlap with an offset of one, except possibly for a few trailing digits. The resulting fractions are typically accurate to at least 11 decimal digits, and to at least 9 hex digits. */ /* David H. Bailey 2006-09-08 */ #include #include int main() { double pid, s1, s2, s3, s4; double series (int m, int n); void ihex (double x, int m, char c); int id = 1000000; #define NHX 16 char chx; /* id is the digit position. Digits generated follow immediately after id. */ s1 = series (1, id); s2 = series (4, id); s3 = series (5, id); s4 = series (6, id); pid = 4. * s1 - 2. * s2 - s3 - s4; pid = pid - (int) pid + 1.; ihex (pid, NHX, chx); printf (" position = %i\n fraction = %.15f \n hex digits = %10.10s\n", id, pid, chx); } void ihex (double x, int nhx, char chx) /* This returns, in chx, the first nhx hex digits of the fraction of x. */ { int i; double y; char hx = "0123456789ABCDEF"; y = fabs (x); for (i = 0; i < nhx; i++){ y = 16. * (y - floor (y)); chx[i] = hx[(int) y]; } } double series (int m, int id) /* This routine evaluates the series sum_k 16^(id-k)/(8*k+m) using the modular exponentiation technique. */ { int k; double ak, eps, p, s, t; double expm (double x, double y); #define eps 1e-17 s = 0.; /* Sum the series up to id. */ for (k = 0; k < id; k++){ ak = 8 * k + m; p = id - k; t = expm (p, ak); s = s + t / ak; s = s - (int) s; } /* Compute a few terms where k >= id. */ for (k = id; k <= id + 100; k++){ ak = 8 * k + m; t = pow (16., (double) (id - k)) / ak; if (t < eps) break; s = s + t; s = s - (int) s; } return s; } double expm (double p, double ak) /* expm = 16^p mod ak. This routine uses the left-to-right binary exponentiation scheme. */ { int i, j; double p1, pt, r; #define ntp 25 static double tp; static int tp1 = 0; /* If this is the first call to expm, fill the power of two table tp. */ if (tp1 == 0) { tp1 = 1; tp = 1.; for (i = 1; i < ntp; i++) tp[i] = 2. * tp; } if (ak == 1.) return 0.; /* Find the greatest power of two less than or equal to p. */ for (i = 0; i < ntp; i++) if (tp[i] > p) break; pt = tp; p1 = p; r = 1.; /* Perform binary exponentiation algorithm modulo ak. */ for (j = 1; j <= i; j++){ if (p1 >= pt){ r = 16. * r; r = r - (int) (r / ak) * ak; p1 = p1 - pt; } pt = 0.5 * pt; if (pt >= 1.){ r = r * r; r = r - (int) (r / ak) * ak; } } return r; }
Какие возможности это даёт? Например: мы можем создать систему распределённых вычислений, рассчитывающую число Пи и поставить всем Хабром новый рекорд по точности вычисления (который сейчас, к слову, составляет 10 триллионов знаков после запятой). Согласно эмпирическим данным, дробная часть числа Пи представляет собой нормальную числовую последовательность (хотя доказать это достоверно ещё не удалось), а значит, последовательности цифр из него можно использовать в генерации паролей и просто случайных чисел, или в криптографических алгоритмах (например, в хэшировании). Способов применения можно найти великое множество - надо только включить фантазию.

Больше информации по теме вы можете найти в статье самого Дэвида Бэйли, где он подробно рассказывает про алгоритм и его имплементацию (pdf);

И, похоже, вы только что прочитали первую русскоязычную статью об этом алгоритме в рунете - других я найти не смог.

Одним из самых загадочных чисел, известных человечеству, безусловно, является число Π (читается - пи). В алгебре это число отражает величину соотношения длины окружности и ее диаметра. Ранее эту величину называли лудольфовым числом. Как и откуда взялось число Пи доподлинно не известно, но математики делят на 3 этапа всю историю числа Π, на древний, классический и эру цифровых компьютеров.

Число П - иррационально, то есть его нельзя представить в виде простой дроби, где числитель и знаменатель целые числа. Поэтому, такое число не имеет окончания и является периодическим. Впервые иррациональность П доказал И. Ламберт в 1761 году.

Кроме этого свойства, число П не может являться еще и корнем какого-нибудь многочлена, а потому является числом свойство, когда было доказано в 1882 году, положило конец почти сакральному спору математиков «о квадратуре круга», который продолжался на протяжении 2 500 лет.

Известно, что первым ввел обозначение этого числа британец Джонс в 1706 году. После того как появились труды Эйлера, использование такого обозначения стало общепринятым.

Чтобы детально разобраться, что такое число Пи, следует сказать, что его использование настолько широко, что трудно даже назвать область науки, в которой бы без него обходятся. Одно из самых простых и знакомых еще из школьной программы значений - это обозначение геометрического периода. Отношение длины круга к длине его диаметра является постоянной и равно 3, 14. Это значение было известно еще древнейшим математикам в Индии, Греции, Вавилоне, Египте. Наиболее ранний вариант вычисления соотношения относится к 1900 году до н. э. Более приближенное к современному значение П вычислил китайский ученый Лю Хуэй, кроме того, он изобрел и быстрый способ такого вычисления. Его величина оставалась общепринятой на протяжении почти 900 лет.

Классический период развития математики ознаменовался тем, что чтобы установить точно, что такое число Пи, ученые стали использовать методы математического анализа. В 1400-х годах индийский математик Мадхава использовал для вычисления теорию рядов и определил период числа П с точностью до 11 цифр после запятой. Первым европейцем, после Архимеда, который исследовал число П и внес значительный вклад в его обоснование, стал голландец Людольф ван Цейлен, который определил уже 15 цифр после запятой, а в завещании написал весьма занимательные слова: «…кому интересно - пусть идет дальше». Именно в честь этого ученого, число П и получило свое первое и единственное за всю историю именное название.

Эпоха компьютерных вычислений привнесла новые детали в понимание сущности числа П. Так, чтобы выяснить, что такое число Пи, в 1949 году впервые была использована вычислительная машина ЭНИАК, одним из разработчиков которой был будущий «отец» теории современных компьютеров Дж. Первое измерение велось на протяжении 70 часов и дало 2037 цифр после запятой в периоде числа П. Отметка в миллион знаков была достигнута в 1973 году. Кроме того, в этот период были установлены и другие формулы, отражающие число П. Так, братья Чудновские смогли найти такую, которая позволила вычислить 1 011 196 691 цифр периода.

Вообще следует отметить, что чтобы ответить на вопрос: "Что такое число Пи?", многие исследования стали напоминать соревнования. Сегодня уже суперкомпьютеры занимаются вопросом, какое же оно на самом деле, число Пи. интересные факты, связанные с этими исследованиями, пронизывают практически всю историю математики.

Сегодня, например, проводятся мировые чемпионаты по запоминанию числа П и фиксируются мировые рекорды, последний принадлежит китайцу Лю Чао, за сутки с небольшим, назвал 67 890 знаков. В мире есть даже праздник числа П, который отмечается как «День числа Пи».

По данным на 2011 год уже установлено 10 триллионов цифр периода числа.

История числа Пи начинается еще с Древнего Египта и идет параллельно с развитием всей математики. Мы же впервые встречаемся с этой величиной в стенах школы.

Число Пи является, пожалуй, самым загадочным из бесконечного множества других. Ему посвящены стихи, его изображают художники, о нем даже снят фильм. В нашей статье мы рассмотрим историю развития и вычисления, а также области применения константы Пи в нашей жизни.

Число Пи – это математическая константа равная отношению длины окружности к длине ее диаметра. Первоначально оно называлось лудольфово числом, а обозначать его буквой Пи было предложено британским математиком Джонсом в 1706 году. После работ Леонарда Эйлера в 1737 году это обозначение стало общепринятым.

Число Пи является иррациональным, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n - целые числа. Впервые это доказал Иоганн Ламберт в 1761 году.

История развития числа Пи насчитывает уже порядка 4000 лет. Еще древнеегипетским и вавилонским математикам было известно, что отношение длины окружности к диаметру одинаково для любой окружности и значение его равно чуть больше трех.

Архимед предложил математический способ вычисления Пи, в котором он вписывал в окружность и описывал около неё правильные многоугольники. По его расчетам Пи примерно равнялась 22/7 ≈ 3,142857142857143.

Во II веке Чжан Хэн предложил два значения числа Пи: ≈ 3,1724 и ≈ 3,1622.

Индийские математики Ариабхата и Бхаскара нашли приблизительное значение 3,1416.

Самым точным приближением числа Пи на протяжении 900 лет было вычисление китайского математика Цзу Чунчжи, проведенное в 480-х годах. Он вывел, что Пи ≈ 355 / 113 , и показал, что 3,1415926 < Пи < 3,1415927.

До II тысячелетия было вычислено не более 10 цифр числа Пи. Лишь с развитием математического анализа, а особенно с открытием рядов, были осуществлены последующие крупные продвижения в вычислении константы.

В 1400-х годах Мадхава смог вычислить Пи=3,14159265359. Его рекорд удалось побить персидскому математику Аль-Каши в 1424 году. Он в своём труде «Трактат об окружности» привёл 17 цифр числа Пи, 16 из которых оказались верными.

Голландский математик Людольф ван Цейлен дошел в своих вычислениях до 20-ти чисел, отдав на это 10 лет жизни. После его смерти в его записях были обнаружены еще 15 цифр числа Пи. Он завещал, чтобы эти цифры были высечены на его надгробии.

С появлением компьютеров число Пи на сегодняшний день насчитывает несколько триллионов знаков и это не предел. Но, как подмечено в книге «Fractals for the Classroom», при всей важности числа Пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков».

В нашей жизни число Пи используется во многих научных областях. Физика, электроника, теория вероятностей, химия, строительство, навигация, фармакология - это лишь некоторые из них, которые просто невозможно представить себе без этого загадочного числа.

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

По материалам сайта Calculator888.ru - Число Пи - значение, история, кто придумал .

Увлеченные математикой люди по всему миру ежегодно съедают по кусочку пирога четырнадцатого марта - ведь это день числа Пи, самого известного иррационального числа. Эта дата напрямую связана с числом, первые цифры которого 3,14. Пи - это соотношение длины окружности к диаметру. Так как оно иррациональное, записать его в виде дроби невозможно. Это бесконечно длинное число. Его обнаружили тысячи лет назад и с тех пор постоянно изучают, но остались ли у Пи какие-нибудь секреты? От древнего происхождения до неопределенного будущего вот несколько наиболее интересных фактов о числе Пи.

Запоминание Пи

Рекорд в запоминании цифр после запятой принадлежит Раджвиру Мине из Индии, которому удалось запомнить 70 000 цифр - он поставил рекорд двадцать первого марта 2015 года. До этого рекордсменом был Чао Лу из Китая, которому удалось запомнить 67 890 цифр - этот рекорд был поставлен в 2005-м. Неофициальным рекордсменом является Акира Харагучи, записавший на видео свое повторение 100 000 цифр в 2005-м и не так давно опубликовавший видео, где ему удается вспомнить 117 000 цифр. Официальным рекорд стал бы только в том случае, если бы это видео было записано в присутствии представителя книги рекордов Гиннеса, а без подтверждения он остается лишь впечатляющим фактом, но не считается достижением. Энтузиасты математики любят заучивать цифру Пи. Многие люди используют различные мнемонические техники, к примеру стихи, где количество букв в каждом слове совпадает с цифрами Пи. В каждом языке существуют свои варианты подобных фраз, которые помогают запомнить как первые несколько цифр, так и целую сотню.

Существует язык Пи

Увлеченные литературой математики изобрели диалект, в котором число букв во всех словах соответствует цифрам Пи в точном порядке. Писатель Майк Кит даже написал книгу Not a Wake, которая полностью создана на языке Пи. Энтузиасты такого творчества пишут свои произведения в полном соответствии количества букв значению цифр. Это не имеет никакого прикладного применения, но является достаточно распространенным и известным явлением в кругах увлеченных ученых.

Экспоненциальный рост

Пи - это бесконечное число, поэтому люди по определению не смогут никогда установить точные цифры этого числа. Однако количество цифр после запятой сильно увеличилось со времен первого использования Пи. Еще вавилоняне им пользовались, но им было достаточно дроби в три целых и одну восьмую. Китайцы и создатели Ветхого Завета и вовсе ограничивались тройкой. К 1665 году сэр Исаак Ньютон вычислил 16 цифр Пи. К 1719 году французский математик Том Фанте де Ланьи вычислил 127 цифр. Появление компьютеров радикальным образом улучшило знания человека о Пи. С 1949 года по 1967-й количество известных человеку цифр стремительно выросло с 2037 до 500 000. Не так давно Петер Труэб, ученый из Швейцарии, смог вычислить 2,24 триллиона цифр Пи! На это потребовалось 105 дней. Разумеется, это не предел. Вполне вероятно, что с развитием технологий будет возможно установить еще более точную цифру - так как Пи бесконечно, предела точности просто не существует, и ограничить ее могут лишь технические особенности вычислительной техники.

Вычисление Пи вручную

Если вы хотите найти число самостоятельно, вы можете использовать старомодную технику - вам потребуются линейка, банка и веревка, можно также использовать транспортир и карандаш. Минус использования банки в том, что она должна быть круглой, и точность будет определяться тем, насколько хорошо человек может наматывать веревку вокруг нее. Можно нарисовать окружность транспортиром, но и это требует навыков и точности, так как неровная окружность может серьезно исказить ваши измерения. Более точный метод предполагает использование геометрии. Разделите круг на множество сегментов, как пиццу на кусочки, а потом вычислите длину прямой линии, которая превратила бы каждый сегмент в равнобедренный треугольник. Сумма сторон даст приблизительное число Пи. Чем больше сегментов вы используете, тем более точным получится число. Разумеется, в своих вычислениях вы не сможете приблизиться к результатам компьютера, тем не менее эти простые опыты позволяют более детально понять, что вообще представляет собой число Пи и каким образом оно используется в математике.

Открытие Пи

Древние вавилоняне знали о существовании числа Пи уже четыре тысячи лет назад. Вавилонские таблички исчисляют Пи как 3,125, а в египетском математическом папирусе встречается число 3,1605. В Библии число Пи дается в устаревшей длине - в локтях, а греческий математик Архимед использовал для описания Пи теорему Пифагора, геометрическое соотношение длины сторон треугольника и площади фигур внутри и снаружи кругов. Таким образом, можно с уверенностью сказать, что Пи является одним из наиболее древних математических понятий, хоть точное название данного числа и появилось относительно недавно.

Новый взгляд на Пи

Еще до того, как число Пи стали соотносить с окружностями, у математиков уже было множество способов даже для наименования этого числа. К примеру, в старинных учебниках по математике можно найти фразу на латыни, которую можно грубо перевести как «количество, которое показывает длину, когда на него умножается диаметр». Иррациональное число прославилось тогда, когда швейцарский ученый Леонард Эйлер использовал его в своих трудах по тригонометрии в 1737 году. Тем не менее греческий символ для Пи все еще не использовали - это произошло только в книге менее известного математика Уильяма Джонса. Он использовал его уже в 1706 году, но это долго оставалось без внимания. Со временем ученые приняли такое наименование, и теперь это наиболее известная версия названия, хотя прежде его называли также лудольфовым числом.

Нормальное ли число Пи?

Число Пи определенно странное, но насколько оно подчиняется нормальным математическим законам? Ученые уже разрешили многие вопросы, связанные с этим иррациональным числом, но некоторые загадки остаются. К примеру, неизвестно, насколько часто используются все цифры - цифры от 0 до 9 должны использоваться в равной пропорции. Впрочем, по первым триллионам цифр статистика прослеживается, но из-за того, что число бесконечное, доказать точно ничего невозможно. Есть и другие проблемы, которые пока ускользают от ученых. Вполне возможно, что дальнейшее развитие науки поможет пролить на них свет, но на данный момент это остается за пределами человеческого интеллекта.

Пи звучит божественно

Ученые не могут ответить на некоторые вопросы о числе Пи, тем не менее с каждым годом они все лучше понимают его суть. Уже в восемнадцатом веке была доказана иррациональность этого числа. Кроме того, было доказано, что число является трансцендентным. Это означает, что нет определенной формулы, которая позволила бы подсчитать Пи с помощью рациональных чисел.

Недовольство числом Пи

Многие математики просто влюблены в Пи, но есть и те, кто считает, что у этих цифр нет особенной значимости. Кроме того, они уверяют, что число Тау, которое в два раза больше Пи, более удобное в использовании как иррациональное. Тау показывает связь длины окружности и радиуса, что, по мнению некоторых, представляет более логичный метод исчисления. Впрочем, однозначно определить что-либо в данном вопросе невозможно, и у одного и у другого числа всегда будут сторонники, оба метода имеют право на жизнь, так что это просто интересный факт, а не повод думать, что пользоваться числом Пи не стоит.

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C 1 C 2
=
d 1 d 2 (1)

где C1 и С2 – длины двух разных окружностей, а d1 и d2 – их диаметры.
Это соотношение работает при наличии коэффициента пропорциональности – уже знакомой нам константы π . Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π :

C = π d.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2π R.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

Откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

8 2
S = ( d )
9

Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

Какое из двух числе больше 22/7 или 3.14 ?
- Они равны.
- Почему?
- Каждое из них равно π .
А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: "переложите одну спичку так, чтобы равенство стало верным".

Решение будет таковым: нужно образовать "крышу" для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π .

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют "Архимедовым" числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π . В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

10 6336 14688 1
3 < < π < < 3
71 1 1 7
2017 4673
4 2

можно записать проще: 3,140 909 < π < 3,1 428 265...

Как видим из неравенств, Архимед нашел довольно-таки точное значение с точностью до 0,002. Самое удивительно то, что он нашел два первых знака после запятой: 3,14... Именно такое значение чаще всего мы используем в несложных расчетах.

Практическое применение

Едут двое в поезде:
− Вот смотри, рельсы прямые, колеса круглые.
Откуда же стук?
− Как откуда? Колеса-то круглые, а площадь
круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π , это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

π D 2
S=π R 2 =
4

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 π R = π d,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

где D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

α
S = π R 2
360 ˚

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием "Пи". Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют "День числа Пи". К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.