Пример развивает математические навыки. Математические способности по Б.В. Гнеденко. Применять можно различные игры

Математические способности оказывают прямое влияние на умственное развитие дошкольника. Ребенку гораздо в большей степени приходится смотреть на окружающий мир «математическим взглядом», нежели взрослому человеку. Причина заключается в том, что за короткий период детскому мозгу необходимо разобраться с формами и размерами, геометрическими фигурами и пространственной ориентацией, уяснить их характеристики и отношения.

Какие способности в дошкольном возрасте относятся к математическим

Многие родители думают, что заниматься развитием математических способностей детей в дошкольном возрасте еще рано. И подразумевают под этим понятием некие специальные способности, позволяющие детям оперировать большими числами, или увлеченность формулами и алгоритмами.

В первом случае способности путают с природной одаренностью, а в другом – радующий результат может не иметь никакого отношения к математике. Возможно, ребенку пришелся по душе ритм счета или запомнились образы цифр в арифметическом примере.

Чтобы развеять подобное заблуждение, важно прояснить, какие способности называют математическими.

Математические способности – это особенности протекания мыслительного процесса с выраженностью анализа и синтеза, быстрого абстрагирования и обобщения применительно к математическому материалу.

Опирается на эти же мыслительные операции. Развиваются они у всех деток с различной эффективностью. Стимулировать их развитие можно и нужно. Это вовсе не означает, что у ребенка пробудится математическая одаренность, и он вырастет настоящим математиком. Но, если развивать умения анализировать, выделять признаки, обобщать, выстраивать логическую цепочку мыслей, то это будет способствовать развитию математических способностей дошкольника и более общих – интеллектуальных.

Элементарные математические представления дошкольников

Итак, способности к математике выходят далеко за рамки арифметики и развиваются на основе мыслительных операций. Но, как слово является основой речи, так и в математике существуют элементарные представления, без которых говорить о развитии бессмысленно.

Малышей необходимо обучать счету, знакомить с количественными соотношениями, расширять познания геометрических фигур. К концу дошкольного возраста ребенок должен иметь базовые математические представления:

  1. Знать все цифры от 0 до 9 и узнавать их в любой форме написания.
  2. Считать от 1 до 10, как в прямом, так и обратном порядке (начиная с любой цифры).
  3. Иметь представление о простых порядковых числительных и уметь ими оперировать.
  4. Выполнять операции сложения и вычитания в пределах 10.
  5. Уметь уравнивать количество предметов в двух наборах (В одной корзинке 5 яблок, в другой – 7 груш. Что нужно сделать, чтобы фруктов в корзинках было поровну?).
  6. Знать основные геометрические фигуры и называть отличающие их признаки.
  7. Оперировать количественными соотношениями «больше-меньше», «дальше-ближе».
  8. Оперировать простыми качественными соотношениями: самый большой, самый маленький, самый низкий и пр.
  9. Понимать сложные отношения: «больше, чем самый маленький, но меньше других», «впереди и выше других» и пр.
  10. Уметь выявлять лишний объект, не подходящий к группе остальных.
  11. Выстраивать простые ряды по возрастанию и убыванию (На кубиках изображены точки в количестве 3, 5, 7, 8. Расставить кубики так, чтобы количество точек на каждом последующем уменьшалось).
  12. Находить соответствующее место объекта с числовым признаком (На примере предыдущего задания: расставлены кубики с точками 3, 5 и 8. Куда поставить кубик с 7 точками?).

Этот математический «багаж» предстоит накопить ребенку до поступления в школу. Перечисленные представления относятся к элементарным. Без них изучать математику невозможно.

Среди базовых умений есть совершенно простые, которые доступны уже в 3-4 года, но есть и такие (9-12 пункты), которые используют простейший анализ, сравнение, обобщение. Им предстоит сформироваться в процессе игровых занятий в старшем дошкольном возрасте.

Перечень элементарных представлений можно использовать для выявления математических способностей дошкольников. Предложив ребенку выполнить задание, соответствующее каждому пункту, определяют, какие умения уже сформированы, а над какими нужно поработать.

Развиваем математические способности ребенка в игре

Выполнение заданий с математическим уклоном особенно полезно для детей, так как развивает . Ценность состоит не только в накапливании математических представлений и навыков, но и в том, что происходит общее умственное развитие дошкольника.

В практической психологии выделяют три категории игровых занятий, направленных на развитие отдельных компонентов математических способностей.

  1. Упражнения на определение свойств предметов, выявление объектов по обозначенному признаку (аналитико-синтетические способности).
  2. Игры на сопоставление различных свойств, выявление существенных признаков, абстрагирование от второстепенных, обобщение.
  3. Игры на развитие логических умозаключений на основе мыслительных операций.

Развитие математических способностей у детей дошкольного возраста должно осуществляться исключительно в игровой форме.

Упражнения на развитие анализа и синтеза

1.По-порядку становись! Игра на упорядочение объектов по размеру. Подготовить 10 одноцветных полосок из картона одинаковой ширины и различной длины и разложить их хаотично перед дошкольником.

Инструкция: «Расставь «спортсменов» по росту от самого низкого до самого высокого». Если ребенок затрудняется с выбором полоски, предложите «спортсменам» мериться ростом.

После выполнения задания предложите ребенку отвернуться и поменяйте местами некоторые полоски. Дошкольнику предстоит вернуть «хулиганов» на свои места.

2.Сложи квадрат. Подготовьте два набора треугольников. 1-ый — один большой треугольник и два маленьких; 2-ой – 4 одинаковых маленьких. Предложите ребенку сначала сложить квадрат из трех деталей, затем из четырех.

Рисунок 1.

Если дошкольник на составление второго квадрата затрачивает меньше времени, значит, пришло понимание. Способные дети справляются с каждым из этих заданий менее чем за 20 секунд.

Упражнения на абстрагирование и обобщение

1.Четвертый лишний. Понадобится набор карточек, на которых изображены четыре предмета. На каждой карточке три объекта должны быть связаны между собой существенным признаком.

Инструкция: «Найди, что на картинке лишнее. Что не подходит ко всем остальным и почему?».

Рисунок 2.

Такие упражнения стоит начинать с простых групп объектов и постепенно усложнять. Например, карточку с изображением стола, стула, чайника и дивана – можно применять в занятиях с 4-летними детьми, а наборы с геометрическими фигурами предлагать старшим дошкольникам.

2.Построй заборчик. Необходимо подготовить не менее 20 полосок равной длины и ширины или счетные палочки двух цветов. Для примера: синего цвета – С, и красного – К.

Инструкция: «Давай построим красивый заборчик, где чередуются цвета. Первой будет синяя палочка, за ней – красная, далее… (продолжаем выкладывать палочки в последовательности СКССККСК). А теперь ты продолжи строить забор, чтобы был такой же узор».

В случае затруднения обращать внимание ребенка на ритм чередования цветов. Упражнение можно выполнять несколько раз с различным ритмом узора.

Логико-математические игры

1.Мы едем-едем-едем . Необходимо подобрать 10-12 прямоугольных картинок с изображением хорошо знакомых ребенку предметов. Играет ребенок в паре с взрослым.

Инструкция: «Сейчас мы составим поезд из вагончиков, которые будут прочно между собой связаны важным признаком. В моем вагончике будет чашка (кладет первую картинку), а чтобы твой вагончик присоединился, можно выбрать картинку с изображением ложки. Чашка и ложка связаны, потому что это посуда. Я дополню наш поезд картинкой с совочком, так как совочек и ложка имеют похожую форму и т.д.»

Поезд готов отправиться в путь, если все картинки нашли свое место. Можно смешать картинки и вновь начать игру, находя новые взаимосвязи.

2.Задания на поиск подходящей «заплатки» для коврика вызывают живой интерес у дошкольников разного возраста. Для проведения игры необходимо изготовить несколько картинок, на которых изображен коврик с вырезанным кругом или прямоугольником. Отдельно необходимо изобразить варианты «заплаток» с характерным узором, среди которых ребенку придется найти подходящий для коврика.

Начинать выполнять задания необходимо с цветовых оттенков коврика. Далее предлагать карточки с простыми узорами ковриков, и по мере развития навыков логического выбора, усложнять задания по образцу теста Равена.

Рисунок 3.

«Починка» коврика развивает одновременно ряд важных аспектов: наглядно-образные представления, мыслительные операции, способность к воссозданию целого.

Рекомендации родителям по развитию математических способностей ребенка

Зачастую родители-гуманитарии склонны игнорировать вопрос развития математических способностей у своих детей, и это ошибочный подход. В дошкольном возрасте данные способности применяются ребенком для познания окружающего мира.

Дошкольник нуждается в стимулировании математического подхода, чтобы уяснить закономерности, причинно-следственный и логичный уклад реальной жизни.

С раннего детства следует окружать ребенка развивающими игрушками, требующими элементарного анализа и поиска закономерных связей. Это различные пирамидки, мозаики, игрушки-вкладыши, наборы кубиков и других геометрических тел, конструкторы LEGO.

По достижении трехлетнего возраста необходимо дополнить познавательную деятельность ребенка игровыми занятиями, стимулирующими формирование математических способностей. При этом следует учитывать несколько важных моментов:

  • Развивающие игры должны быть непродолжительными. Дошкольники с соответствующими задатками проявляют любопытство к подобным играм, следовательно, они должны длиться столько, сколько присутствует интерес. Других детей нужно умело завлекать выполнением задания.
  • Игры аналитико-логического характера нужно проводить с применением наглядного материала – картинок, игрушек, геометрических фигур.
  • Стимульный материал для игры несложно подготовить самостоятельно, ориентируясь на примеры данной статьи.

Ученые обосновали, что применение геометрического материала наиболее эффективно в развитии математических способностей. Восприятие фигур опирается на сенсорные способности, которые формируются у ребенка ранее других , позволяя малышу улавливать связи и отношения между объектами или их деталями.

Развивающие логико-математические игры и упражнения способствуют формированию самостоятельности мышления дошкольника, его умению выделять главное в значительном объеме информации. А это и есть качества, которые необходимы для успешного обучения.

1.2 Математические способности и их структура

Так в чем же заключаются математические способности? Или они есть ни что иное, как качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Является ли математическая способность унитарным или интегральным свойством? В последнем случае можно говорить о структуре математических способностей, о компонентах этого сложного образования. Ответы на эти вопросы искали психологи и педагоги еще начала века, но до сих пор нет единого взгляда на проблему математических способностей. Попробуем разобраться в этих вопросах, проанализировав работы некоторых ведущих специалистов, работавших над этой проблемой.

Пытаясь разобраться в психологии математического мышления, Д. Мордухай-Болтовской выделяет в нем два процесса: постановку проблемы и ее решение, и указывает свойства ума, необходимые для успешного осуществления этих процессов. Для успешной постановки проблемы главным необходимым условием он считает творческое воображение: “При самом выборе проблемы иногда необходимо делать гипотезу, необходима не точная цепь силлогизмов, а воображение” (65, с.495). Второй составляющей называет память на схемы рассуждений и бессознательные мыслительные процессы.”Мышление математика … глубоко внедряется в бессознательную сферу, то всплывая на ее поверхность, то погружаясь в глубину” (65, с.496). Так же Д. Мордухай-Болтовской выделяет остроумие, как одно из характерных свойств математической способности ¾ “способность обнимать умом зараз два совершенно разнородных предмета” (65, с.496) (то есть остроумие ¾ это способность объединять в одном суждении понятия из двух малосвязанных областей) ¾ и, наконец, быстроту математического мышления. При этом он особо отмечает, что при анализе математической способности следует резко отличать склонность к известному роду занятий от способностей (65, 66).

А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Кроме того, для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода ¾ есть основной элемент математического творчества (74).

Л.А. Венгер относит к математическим способностям такие особенности умственной деятельности, как обобщение математических объектов, отношений и действий, то есть способность видеть общее в разных конкретных выражениях и задачах; способность мыслить “свернутыми”, крупными единицами и “экономно”, без лишней детализации; способность переключения с прямого на обратный ход мысли (13).

Б.А. Кордемский не говорит о математических способностях, а выделяет элементы математического мышления. К ним он относит инициативность (желание самому постигнуть проблему, стремление к самостоятельному поиску способов и средств решения задачи), гибкость и критичность ума (придумывание и применение нешаблонных, оригинальных, остроумных приемов решения задач и методов рассуждений с постоянной проверкой их правильности, строгости и практической ценности) (42, 43). Кроме этого, он выделяет и такой элемент, как волевые усилия, под которыми понимает “упорство и настойчивость, которые проявляются в преодолении трудностей, возникающих в процессе овладения математическими методами при решении задач”(42, с.34).

Для того чтобы понять, какие еще качества требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном: что нет, и не может быть единственной ярко выраженной математической способности ¾ это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математическую память на схемы рассуждений и доказательств, методы решения задач и способы подхода к ним. Одним из них является В.А. Крутецкий. Он так определяет математические способности: ”Под способностями к изучению математики мы понимаем индивидуально-психологические особенности(прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики” 948, с.41). В своей работе мы, главным образом, будем опираться на исследования именно этого психолога, так как его исследования этой проблемы и на сегодняшний день являются самыми глобальными, а выводы наиболее экспериментально обоснованными. Итак, В.А. Крутецкий различает девять способностей (компонентов математических способностей):

Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

Способность к оперированию числовой и знаковой символикой;

Способность к “последовательному, правильно расчлененному логическому рассуждению”, связанному с потребностью в доказательствах, обосновании, выводах;

Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);

Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

Математическая память. Можно предположить, что ее характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики, как геометрия.

Большинство психологов и педагогов, говоря о математических способностях, опираются именно на эту структуру математических способностей В.А. Крутецкого. Однако в процессе различных исследований математической деятельности учеников, проявляющих способности к этому школьному предмету, некоторыми психологами были выделены и другие компоненты математических способностей. В частности, нас заинтересовали результаты исследовательской работы З.П. Горельченко (20). Он отметил у способных к математике учеников следующие особенности. Во-первых, он уточнил и расширил компонент структуры математических способностей, называемый в современной психологической литературе “обобщение математических понятий” и высказал мысль о единстве двух противоположных тенденций мышления учащегося к обобщению и “сужению” математических понятий. В указанном компоненте возможно видеть отражение единства индуктивного и дедуктивного методов познания учащимися нового в математике. Во-вторых, диалектические зачатки в мышлении учащихся при усвоении новых математических знаний. Это проявляется в том, что почти в любом отдельном математическом факте наиболее способные учащиеся стремятся усмотреть, понять факт, ему противоположный, или, по крайне мере, рассмотреть предельный случай исследуемого явления. В-третьих, он отметил особое повышенное внимание к возникающим новым математическим закономерностям, противоположным ранее установленным. Мышление увлеченных математикой школьников отличается особой восприимчивостью к математическим контрастам, не связанными с предыдущими рассматриваемыми явлениями, не вытекающими из них, а иногда и вступающими в противоречие с ними. Указанная особенность математического поведения наиболее способных учащихся тесно связана с возникновением у них элементов диалектического мышления и вместе с ними служит большим стимулом, побуждающим учащихся к новым математическим раздумьям, усиливает и укрепляет их великий интерес к математике. Он так же отметил и особое увлечение способных учеников сложными математическими проблемами. З.П. Горельченко отмечает, что “подлинное увлечение серьезными математическими задачами характерно только для учеников, влюбленных в математику и проявляющих повышенные способности к успешным занятиям ею. Этим учащимся свойственно стремление попробовать свои силы прежде всего на содержательных задачах, которые решали многие математики и решение которых до сих пор не найдено“ (20, с.11). Таким образом, естественное влечение отдельных учащихся к наиболее трудным математическим задачам свидетельствует о склонности их к серьезной математической работе, о наличии у них способностей к успешным занятиям математикой. Отмечается и такая характерная особенность способных к математике учащихся, как переувлечение математической работой с невозможностью быстро выключиться из процесса математических размышлений. Как правило, для переключения на новую, не математическую работу увлеченным математикой учащимся требуется времени гораздо больше, чем ученикам, не отличающимся особой склонностью к такого рода занятиям. Одним из характерных признаков повышенных математических способностей учащихся и переходу их к зрелому математическому мышлению может считаться и относительно раннее понимание надобности аксиом как исходных истин при доказательствах. Доступное изучение аксиом и аксиоматического метода в значительной мере способствует ускорению развития дедуктивного мышления учащихся. Замечено также, что эстетическое чувство в математической работе у разных учащихся проявляется по-разному. По-разному различные ученики отвечают и на попытку воспитать и развить у них эстетическое чувство, соответствующее их математическому мышлению. Наиболее способных к математике учащихся отличает особый эстетический склад математического мышления. Он позволяет им сравнительно легко понимать некоторые теоретические тонкости в математике, улавливать безупречную логику и красоту математических рассуждений, фиксировать малейшую шероховатость, неточность в логическом строе математических концепций. Самостоятельное устойчивое стремление к оригинальному, нешаблонному, изящному решению математической задачи, к гармоническому единству формальных и семантических компонентов решения задачи, блестящие догадки, иногда опережающие логические алгоритмы, порою трудно переложимые на язык символов, свидетельствуют о наличии в мышлении чувства хорошо развитого математического предвидения, являющегося одной из сторон эстетического мышления в математике. Повышенные эстетические эмоции при математическом размышлении присущи в первую очередь учащимся с высоко развитыми математическими способностями и совместно с эстетическим складом математического мышления могут служить существенным признаком наличия математических способностей у школьников. Следует отметить и сравнительно большую скорость продвижения способных учащихся в овладении математическими знаниями и повышенную быстроту решения математических задач. Как правило, у наиболее способных к математической работе учащихся скорость восприятия и усвоения новых знаний повышенная. Считая это качество с большой вероятностью одним из необходимых, хотя и далеко не достаточным условием наличия математических способностей, следует рассматривать это условие, как компонент их структуры, причем такой, по которому наиболее легка первоначальная ориентация в обнаружении наиболее способных к математике учеников. И, наконец, выделяется такой компонент структуры математических способностей, как характерные особенности памяти учащихся способных к математике. Наиболее способные к математике в процессе математической работы ориентируют свое мышление прежде всего на хорошее понимание познаваемого и только затем на запоминание его. При этом они стремятся как можно глубже осознать, понять не только отдельные математические факты, но и основные идеи, связывающие их друг с другом и остальным усвоенным ранее математическим материалом, четко определить логическое место новых познаваемых фактов в общей системе определенных математических знаний.

Помимо указанных компонентов математических способностей, которые можно и должно развивать, необходимо учитывать еще и то, что успешность осуществления математической деятельности является производным определенного сочетания качеств:

Активного положительного отношения к математике, интереса к ней, стремления заниматься ею, переходящими на высоком уровне развития в страстную увлеченность.

Ряда характерологических черт; прежде всего трудолюбия, организованности, самостоятельности, целеустремленности, настойчивости, а также устойчивых интеллектуальных качеств, чувства удовлетворения от напряженной умственной работы, радость творчества, открытия и так далее.

Наличия во времени осуществления деятельности благоприятных для ее выполнения психических состояний, например, состояние заинтересованности, сосредоточенности, хорошего “психического” самочувствия и так далее.

Но все они сходятся в одном, что игра является способом развития личности, обогащения ее жизненного опыта. - Из всего многообразия игр можно выделить математическую игру, как средство развития познавательного интереса учащихся к математике. Использование математической игры во внеклассной работе по математике наиболее эффективно способствует возникновению интереса у учащихся к математике. - ...

Говоря о том, что некоторые виды технических средств обладают исключительно большими возможностями наглядного показа материала обучения. Олимпиада одна из основных форм организации внеклассной работы по математике. Термин «олимпиада» проявился давно, хотелось бы вспомнить об истории отечественной математической олимпиады. Сначала о ней говорили в единственном числе, поскольку она организовывалась...

Монету второй раз не бросают), в четвертом - второму. Шансы игроков на выигрыш относятся как 3 к 1. В этом отношении и надо разделить ставку. Глава II. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы) Первый шаг на пути ознакомления младших школьников с миром вероятности состоит в длительном экспериментировании. Эксперимент повторяют много раз при...

Если математика не ваш конек, и дается она вам не без труда, прочтите эту статью до конца, и вы узнаете, как улучшить свои математические навыки и добиться успехов в изучении этого непростого предмета.

Шаги

    Просите о помощи.

    • Во время урока просите объяснить вам значение того или иного понятия. Если ответ все-таки не проливает свет на все темные пятна, останьтесь после урока и поговорите с учителем еще раз. Может быть, в беседе один на один он объяснит вам материал поподробнее и больше того, что уместилось в урочное время.
  1. Удостоверьтесь, что понимаете значение всех слов. Математика, если говорить о задачах более высокого уровня, представляет собой, как правило, набор простых операций. Например, при умножении используется сложение, а при делении не обойтись без вычитания. До того, как вы усвоите какое-либо понятие, вам необходимо разобраться в том, какие математические операции оно в себя включает. С каждым математическим термином (например, «переменная») поступайте так:

    • Выучите определение в учебнике: «Символ для неизвестного нам числа, как правило, обозначается буквами, например, x или y.»
    • Упражняйтесь в решении примеров по теме. Например, "4x - 7 = 5," где x – неизвестная переменная, а 4, 7 и 5 – «константы» (определение для этого понятия тоже нужно посмотреть в учебнике).
  2. Уделяйте особое внимание изучению математических правил. Свойства, формулы, уравнения и методы решения задач – все это основные инструменты математической науки. Научитесь полагаться на них так же, как хороший плотник полагается на свои пилу, рулетку, молоток и т. д.

    Принимайте активное участие в классной работе. Если не знаете ответа на вопрос, попросите объяснения. Расскажите учителю, что именно вы уже поняли, чтобы он смог уделить больше внимания тем моментам, которые вызвали у вас затруднение.

    • Рассмотрим ситуацию на примере упомянутой выше задачи с переменной. Скажите учителю так: «Я понимаю, что если умножить на 4 неизвестную переменную (x), отнять 7, то получится 5. С чего мне начать решение?» Теперь учитель будет знать, что именно вызывает у вас трудность и как вовлечь вас в решение задания. А вот если бы вы сказали просто: «Я не понимаю», - учитель мог бы подумать, что ему нужно прежде всего объяснить вам, что такое переменная и константа.
    • Никогда не бойтесь задавать вопросы. Даже Эйнштейн задавал вопросы (а потом сам же и отвечал на них)! Решение не придет к вам само собой, если вы будете бездействовать. Не хотите спрашивать учителя, тогда попросите помощи у соседа по парте или приятеля.
  3. Ищите помощь извне. Если все-таки вам еще нужна помощь, а учитель не может объяснить вам материал так, чтобы вы поняли, попросите порекомендовать вам кого-нибудь для более обстоятельных занятий. Узнайте, может быть, есть какие-нибудь специальные курсы или репетиторские программы, или попросите учителя позаниматься с вами до или после школьных занятий.

    • Наряду с различными способами изучения материала (аудио-, визуальное восприятие и т.д.) существуют и различные подходы в преподавании. Если вы лучше всего воспринимаете информацию визуально, а ваш учитель, пусть и самый лучший в мире, ориентируется в процессе обучения на тех, кто хорошо воспринимает информацию на слух, то вам будет тяжело заниматься с таким педагогом. Поэтому было бы полезно получить дополнительную помощь от тех, кто обучает таким методом, какой удобнее именно для вас.
  4. Записывайте каждое действие в решении. Например, при решении уравнений разделите свое решение на отдельные действия и запишите все, что вы сделали прежде, чем перейти к следующему действию.

    • Подробная запись поможет проследить путь решения и найти ошибки.
    • Пошаговое письменное решение покажет вам, где именно вы ошиблись.
    • Записывая каждое действие в математическом решении, вы еще раз повторите и лучше запомните то, что уже знали.
  5. Старайтесь решать все задания, которые вам были заданы. После нескольких примеров вы набьете руку. Если задания все еще даются с трудом, то вы поймете, где именно у вас возникают сложности.

  6. Просмотрите свои уже проверенные учителем задания. Изучите его пометки и исправления и разберите свои ошибки. Если не все понятно, попросите учителя разобраться вместе.

    • Не стесняйтесь просить о помощи, учитесь на своих ошибках!
    • Даже если математика для вас трудновата, не бойтесь ее. Волнение только все усложняет. Вместо этого наберитесь терпения и постепенно, шаг за шагом изучайте ее.
    • Не забывайте делать домашнее задание! Можете даже составлять свои собственные примеры и задачи, чтобы потренироваться.
    • Не сидите сложа руки из-за страха ошибиться. Пытайтесь что-нибудь решить, даже если не до конца уверены в правильности вашего решения.
    • Спрашивайте, если не понимаете. Попросите учителя объяснить то, что вам непонятно, во время урока или после. Не позволяйте страху бежать впереди паровоза. Не теряйте веры в себя и не обращайте внимания на других.
    • Когда арифметика останется позади, и вы будешь изучать алгебру и геометрию, знайте, что все то новое, что вы будете проходить в этих разделах математики, будет основано на уже изученном ранее материале. Так что убедитесь, что хорошо усвоили каждый свой урок прежде, чем двигаться дальше.
    • Вам будет гораздо проще, если вы будете показывать учителю свою работу.
    • Всегда обращайтесь за помощью к учителю, если что-то не понимаете.
    • Старайтесь понимать все, что вы делаете, а не просто бездумно решайте схожие задания одинаковым способом. Скажем, если вы учитесь складывать большие числа, то подумайте, почему число, обозначающее десятки, нужно прибавлять к сумме в следующем столбце. А если все-таки еще не понимаете, то спросите.
    • Нравится нам это или нет, но умение быстро и правильно считать играет важную роль и в нашей деловой, и в личной жизни.
    • Получайте удовольствие. Ведь даже если пока вам это и не очень-то интересно, тем не менее, математика может быть воистину прекрасна в своей элегантной упорядоченности.
    • Занимайтесь математикой не менее получаса в день.

    Предупреждения

    • Не старайтесь запомнить разобранные примеры наизусть. Наоборот, настаивайте, чтобы учитель объяснил их вам, и убедитесь в том, что вы понимаете, что он говорит. Каждый пример имеет свое решение, и главное – понять, почему их нужно решать именно так. Кроме того, не заучивайте неправильные формулы.

Способности - индивидуально выраженные возможности к успешному осуществлению той или иной деятельности. Включают в себя как отдельные знания, умения навыки, так и готовность к обучению новым способам и приемам деятельности. Для классификации способностей используются разные критерии. Так, могут быть выделены сенсомоторные, перцептивные, мнемические, имажинативные, мыслительные, коммуникативные способности. В качестве другого критерия может выступать та или иная предметная область, в соответствии с чем способности могут быть квалифицированы как научные (математические, лингвистические, гуманитарные); творческие (музыкальные, литературные, художественные); инженерные.

Кратко сформулируем несколько положений общей теории способностей:

1. Способности – это всегда способности к определенному роду деятельности , они существуют только в соответствующей конкретной деятельности человека. Поэтому они и выявлены могут быть лишь на основе анализа конкретной деятельности. Соответственно этому и математические способности существуют только в математической деятельности и в ней должны выявляться.

2. Способности – понятие динамическое. Они не только проявляются и существуют в деятельности, они в деятельности создаются, в деятельности и развиваются. Соответственно этому и математические способности существуют только в динамике, в развитии, они формируются, развиваются в математической деятельности.

3. В отдельные периоды развития человека возникают наиболее благоприятные условия для становления и развития отдельных видов способностей и некоторые из этих условий имеют временный, преходящий характер. Такие возрастные периоды, когда условия для развития тех или иных способностей будут наиболее оптимальными, называются сензитивными (Л. С. Выготский, А. Н. Леонтьев). Очевидно, и для развития математических способностей существуют оптимальные периоды.

4. Успешность деятельности зависит от комплекса способностей. Равно и успешность математической деятельности зависит не от отдельно взятой способности, а от комплекса способностей.

5. Высокие достижения в одной и той же деятельности могут быть обусловлены различным сочетанием способностей. Поэтому принципиально можно говорить о различных типах способностей, в том числе и математических.

6. Возможна в широких пределах компенсация одних способностей другими, вследствие чего относительная слабость какой-нибудь одной способности компенсируется другой способностью, что в итоге не исключает возможности успешного выполнения соответствующей деятельности. А. Г. Ковалев и В. Н. Мясищев понимают компенсацию шире – говорят о возможности компенсации недостающей способности умением, характерологическими качествами (терпением, настойчивостью). По-видимому, компенсация того и другого вида может иметь место и в области математических способностей.

7. Сложным и не до конца решенным в психологии является вопрос о соотношении общей и специальной одаренности. Б. М. Теплов склонен был отрицать само понятие общей одаренности, безотносительной к конкретной деятельности. Понятия «способность» и «одаренность» по Б. М. Теплову имеют смысл только в соотношении с конкретными исторически развивающимися формами общественно-трудовой деятельности. Следует, по его мнению говорить о другом, о более общих и более специальных моментах в одаренности. С. Л. Рубинштейн справедливо отметил, что не следует противопоставлять друг другу общую и специальную одаренность – наличие специальных способностей накладывает определенный отпечаток на общую одаренность, а наличие общей одаренности сказывается на характере специальных способностей. Б. Г. Ананьев указал на то, что следует различать общее развитие и специальное развитие и соответственно общие и специальные способности. Каждое из этих понятий правомерно, обе соответствующие категории взаимосвязаны. Б. Г. Ананьев подчеркивает роль общего развития в становлении специальных способностей.

Исследование математических способностей в зарубежной психологии.

В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей . Если и здесь различать два разных аспекта этих способностей – «школьные» и творческие способности, то в отношении вторых существует полное единство – творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов – биологического потенциала и среды.

Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования . В этом плане можно выделить три важные проблемы.

1. Проблема специфичности математических способностей . Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность – это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

Исследование проблемы способностей в отечественной психологии.

Основным положением отечественной психологии в этом вопросе является положение о решающем значении социальных факторов в развитии способностей, ведущей роли социального опыта человека, условий его жизни и деятельности. Психические особенности не могут быть врожденными. Это целиком относится и к способностям. Способности всегда результат развития. Они формируются и развиваются в жизни, в процессе деятельности, в процессе обучения и воспитания.

Итак, решающую и определяющую роль играют общественный опыт, социальное воздействие, воспитание. Ну а какова же роль прирожденных способностей?

Конечно, трудно определить в каждом конкретном случае относительную роль врожденного и приобретенного, так как и то и другое слито, неразличимо. Но принципиальное решение этого вопроса в отечественной психологии таково: врожденными способности быть не могут, врожденными могут быть только задатки способностей – некоторые анатомо-физиологические особенности мозга и нервной системы, с которыми человек появляется на свет.

Но какова роль в развитии способностей этих врожденных биологических факторов?

Как отмечал С. Л. Рубинштейн, способности не предопределены, но и не могут быть просто насаждены извне. В индивидах должны существовать предпосылки, внутренние условия для развития способностей. А. Н. Леонтьев, А. Р. Лурия также говорят о необходимых внутренних условиях, делающих возможным возникновение способностей.

Способности не заключены в задатках. В онтогенезе они не проявляются, а формируются. Задаток не потенциальная способность (а способность не задаток в развитии), так как анатомо-физиологическая особенность ни при каких условиях не может развиваться в психическую особенность.

Несколько иное понимание задатков дается в работах А. Г. Ковалева и В. Н. Мясищева. Под задатками они понимают психофизиологические свойства, в первую очередь те, которые обнаруживаются в самой ранней фазе овладении той или иной деятельностью (например, хорошее цветоразличение, зрительная память). Другими словами, задатки – это первичная природная способность, еще не развитая, но дающая себя знать при первых пробах деятельности.

Однако и при таком понимании задатков сохраняется основное положение: способности в собственном смысле слова формируются в деятельности, являются прижизненным образованием.

Естественно, все вышесказанное можно отнести и к вопросу о математических способностях, как виду общих способностей.

Математические способности и их природные предпосылки (работы Б. М. Теплова).

Хотя математические способности и не были предметом специального рассмотрения в трудах Б. М. Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы - "Психология музыкальных способностей" и "Ум полководца", ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

В обеих работах Б. М. Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б. М. Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке - слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

Наиболее ярко роль общих способностей продемонстрирована в работе "Ум полководца". Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б. М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б. М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

Важное место в интеллектуальной деятельности полководца занимает память. Она очень избирательна, то есть удерживает прежде всего необходимые, существенные детали. В качестве классического примера такой памяти Б. М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

Б. М. Теплов приходит к выводу, что "умение находить и выделять существенное и постоянная систематизация материала - вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца" (Б. М. Теплов 1985, стр.249). Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это прежде всего мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием "воля". Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

Особое место в интеллектуальной деятельности полководца Б. М. Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б. М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае "озарению" должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

Подтверждения положениям, проанализированным и обобщенным Б. М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков. Так, в психологическом этюде "Математическое творчество" Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом "озарения" необходимо следовал второй этап - тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия (Пуанкаре А., 1909).

Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж. Адамар, "между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера" (Адамар Ж., стр.98). Для того чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Советский психолог, исследовавший математические способности у школьников, В. А. Крутецкий дает следующее определение математическим способностям: "Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики" (Крутецкий В.А.,1968).

Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б. М. Теплов и С. Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В. С. Мерлин, 1986). Б. Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами "талант" и "призвание" (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу (Э. А. Голубева 1993).

Общая схема структуры математических способностей в школьном возрасте по В. А. Крутецкому.

Собранный В. А. Крутецким материал позволил ему выстроить общую схему структуры математических способностей в школьном возрасте.

1. Получение математической информации.

1) Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.

2. Переработка математической информации.

1) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

2) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

3) Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

4) Гибкость мыслительных процессов в математической деятельности.

5) Стремление к ясности, простоте, экономности и рациональности решений.

6) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

3. Хранение математической информации.

1) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).

4. Общий синтетический компонент.

1) Математическая направленность ума.

Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:

1. Быстрота мыслительных процессов как временная характеристика.

2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).

3. Память на цифры, числа, формулы.

4. Способность к пространственным представлениям.

5. Способность наглядно представить абстрактные математические отношения и зависимости.

Заключение.

Проблема математических способностей в психологии представляет обширное поле действия для исследователя. В силу противоречий между различными течениями в психологии, а также внутри самих течений, пока не может быть и речи о точном и строгом понимании содержания этого понятия.

Рассмотренные в данной работе книги подтверждают это заключение. Вместе с тем следует отметить неугасающий интерес к этой проблеме во всех течениях психологии, что подтверждает следующий вывод.

Практическая ценность исследований по этой теме очевидна: математическое образование играет ведущую роль в большинстве образовательных систем, а оно, в свою очередь, станет более эффективным после научного обоснования его основы – теории математических способностей.

Итак, как утверждал В. А. Крутецкий: «Задача всестороннего и гармонического развития личности человека делает совершенно необходимой глубокую научную разработку проблемы способности людей к тем или иным видам деятельности. Разработка этой проблемы представляет как теоретический, так и практический интерес».

Список литературы:

Адамар Ж. Исследование психологии процесса изобретения в области математики. М., 1970.
Ананьев Б.Г. Избранные труды: В 2-х томах. М., 1980.
Голубева Э.А., Гусева Е.П., Пасынкова А.В., Максимова Н.Е., Максименко В.И. Биоэлектрические корреляты памяти и успеваемости у старших школьников. Вопросы психологии, 1974, № 5.
Голубева Э.А. Способности и индивидуальность. М., 1993.
Кадыров Б.Р. Уровень активации и некоторые динамические характеристики психической активности.
Дис. канд. психол. наук. М., 1990.
Крутецкий В.А. Психология математических способностей школьников. М., 1968.
Мерлин В.С. Очерк интегрального исследования индивидуальности. М., 1986.
Печенков В.В. Проблема соотношения общих и специально человеческих типов в.н.д. и их психологических проявлений. В книге "Способности и склонности", М., 1989.
Пуанкаре А. Математическое творчество. М., 1909.
Рубинштейн С.Л. Основы общей психологии: В 2-х т. М., 1989.
Теплов Б.М. Избранные труды: В 2-х томах. М., 1985.


В исследование математических способностей внесли свой вклад такие представители определенных направлений в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А.Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Все ученые сходятся во мнении, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию, самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

А. Роджерс отмечает две стороны математических способностей: репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

В статье «Психологи математического мышления» Д. Мордухай-Болтовский придавал особое значение «бессознательному мыслительному процессу», утверждая, что «мышление математика глубоко внедряется в бессознательную сферу, то всплывая на ее поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движений смычка». Внезапное появление в сознании готового решения какой-либо задачи, которую мы не можем долго решить, мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания. По мнению Д. Мордухай-Болтовского, наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся «черновая» работа, причем бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Д. Мордухай-Болтовский отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуща даже гениальным людям, что между математическим и нематематическим умом есть существенная разница.

Выделяют следующие компоненты математических способностей:

  • -«сильная память» (память, скорее не на факты, а на идеи и мысли);
  • -«остроумие» как способность «обнимать в одном суждении» понятия из двух малосвязанных областей мысли находить в уже известном сходное с данным, отыскивать сходное в самых отдаленных, совершенно разнородных предметах;
  • -«быстрота мысли» (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному).

Д. Мордухай-Болтовский различает типы математического воображения, которые лежат в основе разных типов математиков - «алгебраистов» и «геометров». Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать, так как «геометр».

Отечественная теория способностей создавалась совместным трудом виднейших психологов, из которых в первую очередь надо назвать Б.М. Теплова, а так же Л.С. Выготского, А.Н. Леонтьева, С.Л. Рубинштейна и Б.Г. Ананьева. Помимо общетеоретических исследований проблемы математических способностей, В.А. Крутецкий своей монографией «Психология математических способностей школьников» положил начало экспериментальному анализу структуры математических способностей. Под способностями к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями, навыками в области математики.

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях обучаемости детей, вводят понятие психологических свойств, определяющих при прочих равных условиях успех в учении.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявление которой называют «синдромом математической одаренности».

Большой вклад в разработку данной проблемы внес В.А. Крутецкий . Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одаренность. В.А. Крутецкий представил схему структуры математических способностей в школьном возрасте:

  • · Получение математической информации (способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи).
  • · Переработка математической информации
  • А)Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.
  • Б)Способность к быстрому и широкому обобщению математических объектов, отношений и действий.
  • В)способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.
  • Г)Гибкость мыслительных процессов в математической деятельности.
  • Д)Стремление к ясности, простоте, экономности и рациональности решений.
  • Е)Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).
  • · Хранение математической информации.

Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений, доказательств, методы решения задач и принципы подхода к ним).

· Общий синтетический компонент. Математическая направленность ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой структуре не обязательно. Они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума. Быстрота мыслительных процессов как временная характеристика, индивидуальный темп работы не имеют решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко. Также к нейтральным компонентам можно отнести вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные воспроизводить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трехзначных чисел), но не умеющие решать сколько-нибудь сложные задачи. Известно также, что существовали и существуют феноменальные «счетчики» не давшие математике ничего, а выдающийся математик А. Пуанкре писал о себе, что без ошибки не может сделать даже сложение.

Память на цифры, формулы и числа является нейтральной по отношению к математической одаренности. Как указывал академик А.Н. Коломогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

Способность к пространственным представлениям, способность наглядно представлять абстрактные математические отношения и зависимости также составляют нейтральный компонент.

Важно отметить, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере ее можно считать общей схемой структуры математических способностей, в какой мере ее можно отнести к вполне сложившимся одаренным математикам.

Известно, что в любой области науки одаренность как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одаренности всегда можно наметить какие-то основные типологические характеристики различия в структуре одаренности, выделить определенные типы, значительно отличающиеся один от другого, разными путями приходящие с одинаково высокими достижениями в соответствующей области.

Об аналитическом и геометрическом типах упоминается в работах А. Пуанкре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным в) гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип. Мышление этого типа характеризуется преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлеченными схемами. У них нет потребности в наглядных опорах, в использовании предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости «наталкивают» на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализатором геометрической схемы или чертежа.

  • -Геометрический тип. Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлеченными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.
  • -Гармонический тип. Для этого типа характерно равновесие хорошо развитых словесно-логического и наглядно-образного компонента при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся четко осознают, что содержание обобщения не исчерпывается частными случаями. Представители этого типа успешно осуществляют образно-геометрический подход к решению многих задач.

Установленные типы имеют общее значение. Их наличие подтверждается многими исследованиями.

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из исследований Ж. Пиаже. Пиаже считал, что ребенок только к 12 годам становится способным к абстрактному мышлению . Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришел к выводу, что в наглядно-конкретном плане школьник мыслит до 12 - 13 лет, а мышление в плане формальной алгебры, связанное с овладением операциями, символами, складывается к 17 годам.

Исследование отечественных психологов дают иные результаты. П.П. Блонский писал об интенсивном развитии у подростка, обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах . Исследования И.В. Дубровиной дают основание говорить о том, что применительно к возрасту младших школьников мы не можем утверждать о сколько-нибудь сформированной структуре собственно математических способностей, конечно, исключая случаи особой одаренности. Поэтому «понятие математические способности» условно в применении к младшим школьникам - детям 7 - 10 лет, при исследовании компонентов математических способностей в этом возрасте речь может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывают, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенности школьника в большей мере зависят от условий, в которых осуществляется обучение, считать, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может «стать» весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер. Здесь не может быть произвольности. Не может, например, способность к обобщению сложных математических отношений и методов сформироваться раньше, чем способность к обобщению простых математических отношений . Таким образом, возрастные особенности - это несколько условное понятие. Поэтому все исследования ориентированы на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

В зарубежной психологии имеются работы, где сделана попытка выявить отдельные качественные особенности математического мышления мальчиков и девочек. В. Штерн говорит о своем несогласии с той точкой зрения, согласно которой различия в умственной области мужчин и женщин есть результат неодинакового воспитания. По его мнению, причины кроются в разных внутренних задатках. Поэтому женщины менее склонны к абстрактному мышлению и менее способны в этом отношении.

В своих исследованиях Ч. Спирмен и Э. Торндайк пришли к выводу, что «в отношении способностей большой разницы нет», но при этом отмечают большую склонность девочек к детализированию, запоминанию подробностей.

Соответствующие исследования в отечественной психологии были проведены под руководством И.В.Дубровиной и С.И.Шапиро. Они не обнаружили каких-либо качественных специфических особенностей в математическом мышлении мальчиков и девочек. Не указали на эти различия и опрошенные ими учителя.

Разумеется, фактически мальчики чаще обнаруживают математические способности. Победителями в математических олимпиадах чаще бывают мальчики, чем девочки. Но это фактическое различение надо отнести за счет разницы в традициях, в воспитании мальчиков и девочек, за счет распространенного взгляда на мужские и женские профессии. Это приводит к тому, что математика часто оказывается вне направленности интересов девочек.