Как умножаются числа с разными знаками. Дроби. Умножение и деление дробей. V. Математическая цепочка

После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся ее находить, поработаем с его коэффициентами.

Yandex.RTB R-A-339285-1

Многочлен и его члены – определения и примеры

Определение многочлена было надо еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.

Определение 1

Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.

Из определения следует, что примеры многочленов могут быть различными: 5 , 0 , − 1 , x , 5 · a · b 3 , x 2 · 0 , 6 · x · (− 2) · y 12 , - 2 13 · x · y 2 · 3 2 3 · x · x 3 · y · z и так далее. Из определения имеем, что 1 + x , a 2 + b 2 и выражение x 2 - 2 · x · y + 2 5 · x 2 + y 2 + 5 , 2 · y · x являются многочленами.

Рассмотрим еще определения.

Определение 2

Членами многочлена называются его составляющие одночлены.

Рассмотрим такой пример, где имеем многочлен 3 · x 4 − 2 · x · y + 3 − y 3 , состоящий из 4 членов: 3 · x 4 , − 2 · x · y , 3 и − y 3 . Такой одночлен можно считать многочленом, который состоит из одного члена.

Определение 3

Многочлены, которые имеют в своем составе 2 , 3 трехчлена имеют соответственное название – двучлен и трехчлен .

Отсюда следует, что выражение вида x + y – является двучленом, а выражение 2 · x 3 · q − q · x · x + 7 · b – трехчленом.

По школьной программе работали с линейным двучленом вида a · x + b , где а и b являются некоторыми числами, а х – переменной. Рассмотрим примеры линейных двучленов вида: x + 1 , x · 7 , 2 − 4 с примерами квадратных трехчленов x 2 + 3 · x − 5 и 2 5 · x 2 - 3 x + 11 .

Для преобразования и решения необходимо находить и приводить подобные слагаемые. Например, многочлен вида 1 + 5 · x − 3 + y + 2 · x имеет подобные слагаемые 1 и - 3 , 5 х и 2 х. Их подразделяют в особую группу под названием подобных членов многочлена.

Определение 4

Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.

В примере, приведенном выше, имеем, что 1 и - 3 , 5 х и 2 х являются подобными членами многочлена или подобными слагаемыми. Для того, что бы упростить выражение, применяют нахождение и приведение подобных слагаемых.

Многочлен стандартного вида

У всех одночленов и многочленов имеются свои определенные названия.

Определение 5

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.

Из определения видно, что возможно приведение многочленов стандартного вида, например, 3 · x 2 − x · y + 1 и __formula__, причем запись в стандартном виде. Выражения 5 + 3 · x 2 − x 2 + 2 · x · z и 5 + 3 · x 2 − x 2 + 2 · x · z многочленами стандартного вида не является, так как первый из них имеет подобные слагаемые в виде 3 · x 2 и − x 2 , а второй содержит одночлен вида x · y 3 · x · z 2 , отличающийся от стандартного многочлена.

Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.

Определение 6

Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.

Иначе говоря, когда запись многочлена в стандартном виде имеет число, его называют свободным членом. Тогда число 5 является свободным членом многочлена x 2 · z + 5 , а многочлен 7 · a + 4 · a · b + b 3 свободного члена не имеет.

Степень многочлена – как ее найти?

Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.

Определение 7

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.

Рассмотрим на примере. Степень многочлена 5 · x 3 − 4 равняется 3 , потому как одночлены, входящие в его состав, имеют степени 3 и 0 , а большее из них 3 соответственно. Определение степени из многочлена 4 · x 2 · y 3 − 5 · x 4 · y + 6 · x равняется наибольшему из чисел, то есть 2 + 3 = 5 , 4 + 1 = 5 и 1 , значит 5 .

Следует выяснить, каким образом находится сама степень.

Определение 8

Степень многочлена произвольного числа - это степень соответствующего ему многочлена в стандартном виде.

Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.

Пример 1

Найти степень многочлена 3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 .

Решение

Для начала представим многочлен в стандартном виде. Получим выражение вида:

3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 = = (3 · a 12 − 2 · a 12 − a 12) − 2 · (a · a) · (b · b) · (c · c) + y 2 · z 2 = = − 2 · a 2 · b 2 · c 2 + y 2 · z 2

При получении многочлена стандартного вида получаем, что отчетливо выделяются два из них − 2 · a 2 · b 2 · c 2 и y 2 · z 2 . Для нахождения степеней посчитаем и получим, что 2 + 2 + 2 = 6 и 2 + 2 = 4 . Видно, что наибольшая из них равняется 6 . Из определения следует, что именно 6 является степенью многочлена − 2 · a 2 · b 2 · c 2 + y 2 · z 2 , следовательно и исходного значения.

Ответ : 6 .

Коэффициенты членов многочлена

Определение 9

Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.

При рассмотрении примера видно, что многочлен вида 2 · x − 0 , 5 · x · y + 3 · x + 7 имеет в своем составе 4 многочлена: 2 · x , − 0 , 5 · x · y , 3 · x и 7 с соответствующими их коэффициентами 2 , − 0 , 5 , 3 и 7 . Значит, 2 , − 0 , 5 , 3 и 7 считаются коэффициентами членов заданного многочлена вида 2 · x − 0 , 5 · x · y + 3 · x + 7 . При преобразовании важно обращать внимание на коэффициенты, стоящие перед переменными.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Разложение многочлена пятой степени на квадратичные множители с помощью интерполяционного многочлена Лагранжа

    Определение интерполяционного многочлена Лагранжа пятой степени.

Чтобы разложить приведенный многочлен пятой степени на множители необходимо выполнение равенства: f(x)=φ(x)·g(x). При этом степень многочленов φ(x) и g(x) должна быть не выше пятой.

Для определения целого многочлена не выше пятой степени с заданной таблицей значений существует формула интерполяционного многочлена Лагранжа (ИМЛ ):

φ(x) = F(x)· , где F(x)=(x-x 1)·(x-x 2)·(x-x 3)·(x-x 4)·(x-x 5)(x-x 6), Fʹ(x k) значения производной функции F(x) в точках x k .

Где необходимо задать на плоскости координаты шести точек.

Для определения множителей φ(x) и g(x) выберем произвольно шесть целых значений x= x 1 ; x 2 ; x 3 ; x 4 ; x 5 ; x 6 и станем подставлять их в равенство f(x)= φ(x)·g(x). Получим:

f(x 1)= φ(x 1)·g(x 1) ; f(x 2)= φ(x 2)·g(x 2); f(x 3)= φ(x 3)·g(x 3);

f(x 4)= φ(x 4)·g(x 4) ; f(x 5)=φ(x 5)·g(x 5); f(x 6)= φ(x 6)· g(x 6).

Эти равенства показывают, что каждое значение φ(x k) искомого множителя φ(x) является делителем числа f(x k).

Для построения множителя φ(x) воспользуемся ИМЛ и в качестве f(x k) будем подставлять произвольные целые числа А k , а значения x k выберем в виде последовательных целых чисел близких к нулю, т.е.

x 1 = -3; x 2 = -2; x 3 = -1; x 4 =0; x 5 =1; x 6 =2.

В развернутом виде ИМЛ φ(x) выглядит так:

φ(x) = F(x) , где F(x)=(x+3)·(x+2)·(x+1)·x·(x-1)·(x-2). (2).

Для построения множителя φ(x) с помощью ИМЛ необходимо задать числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 .

Определение: числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 взятые из формулы ИМЛ записанные в ряд называются Лагранжевым рядом.

    Разложение многочлена на линейные множителис помощью ИМЛ.

Теорема 1 (Обобщение схемы Горнера)

Многочлен φ(x) является линейным, если числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 образуют возрастающую последовательность целых чисел.

Доказательство: приведем многочлен (2) к наименьшему общему знаменателю, т.е. к 120· F(x), получившийся числитель запишем в виде многочлена пятой степени у которого коэффициенты содержат числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 . Для того что бы многочлен (2) был линейным необходимо приравнять к нулю коэффициенты при «х» пятой, четвертой, третьей и второй степени, а коэффициент при «х» первой степени приравнять к 120. В результате получим следующую систему из пяти уравнений с шестью переменными:

5·А 2 +80·А 3 -150·А 4 +80·А 4 -5·А 6 =0

4·А 1 +30·А 2 -120·А 3 +40·А 4 +60·А 5 -6·А 6 =120.

Если зафиксировать число А 6 то все остальные выразятся следующими формулами: А 1 6 -5; А 2 6 -4; А 3 6 -3; А 4 6 -2; А 5 6 -1.

Мы получили возрастающую последовательность целых чисел.

Из теоремы вытекает что линейный множитель имеет следующий вид: φ(x)=x+А 4 (3).

Определение : последовательность чисел заданных данными соотношениями А 1 =А 6 -5; А 2 =А 6 -4; А 3 =А 6 -3; А 4 =А 6 -2; А 5 =А 6 -1; А 6 называют линейным Лагранжевым рядом.

Определение : линейный Лагранжевый ряд называется «кандидатом » если все его числа А k являются делителями соответствующих значений функции f(x k), где k=1;2;3;4;5;6.

Для всех кандидатов строим линейный множитель φ(x) по формуле (3) и проверяем его на делимость с f(x).

Из теоремы вытекает что линейный множитель имеет следующий вид φ(x)=x+А 4 ,

где А 4 является делителем свободного члена т.е. f(0). Аналогично определяется линейный множитель приведенного многочлена по схеме Горнера.

Пример: f(x)= x 5 -8x 4 +2x 3 -16x 2 +x-8. По схеме Горнера найдем значение многочлена при х= -3; -2; -1; 0;1;2. Для этого составим таблицу 1:

Последний столбец таблицы 1 перепишем первой строкой таблицы 2. Выберем в этой строке число, имеющее наименьшее число делителей. В нашем примере это число -8. Запишем в столбик все его делители. Каждому делителю числа -8 запишем в строчку линейный Лагранжевый ряд. Из получившихся Лагранжевых рядов выберем «кандидатов». Построим с помощью «кандидатов» многочлен φ(x) по формуле (3) и проверим их на делимость с данным многочленом f(x)= x 5 -8x 4 +2x 3 -16x 2 +x-8.

Таблица 2:

«кандидат»

В приведенной выше таблице 2 закрашены серым цветом прямоугольники, в которых находятся числа, не являющиеся делителями соответствующих значений функции f(x). В данной таблице находится строка или Лагранжевый ряд все числа, которого являются делителями соответствующих значений функции f(x). Этот ряд является единственным кандидатом. В этом ряде А 4 = -8, подставляя в формулу φ(x)=x- А 4 , находим φ(x)=x- 8.

Проверка: x 5 -8x 4 +2x 3 -16x 2 +x-8=(x-8)·(x 4 +2x 2 +1). Действительный кандидат выделим черным цветом.

    Разложение многочленана квадратичные множители с помощью ИМЛ.

Теорема 2 . Множитель φ(x) является квадратичным если числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 связаны между собой следующими соотношениями:

А 1 =5·(А 5 +4)-4·А 6

А 2 =4·(А 5 +3)-3·А 6

А 3 =3·(А 5 +2)-2·А 6

А 4 =2·(А 5 +1)-1·А 6

Доказательство: Доказательство: приведем многочлен (1) к наименьшему общему знаменателю, т.е. к 120· F(x),получившийся числитель запишем в виде многочлена пятой степени у которого коэффициенты содержат числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 . Для того что бы многочлен (1) был квадратичным необходимо приравнять к нулю коэффициенты при «х» пятой, четвертой и третьей степени, а коэффициент при «х» второй степени приравнять к 120. В результате получим следующую систему из четырех уравнений с шестью переменными:

А 1 +5·А 2 -10·А 3 +10·А 4 -5·А 5 +А 6 =0

5·А 2 -20·А 3 +30·А 4 -20·А 5 +5·А 6 =0

5·А 1 -35·А 2 +70·А 3 -50·А 4 +5·А 5 +5·А 6 =0

5·А 2 +80·А 3 -150·А 4 +80·А 5 -5·А 6 =120.

Если зафиксировать два числа А 5 и А 6 то все остальные выразятся следующими формулами:

А 1 =5·(А 5 +4)-4·А 6 ; А 2 =4·(А 5 +3)-3·А 6 ;

А 3 =3·(А 5 +2)-2·А 6 ; А 4 =2·(А 5 +1)-1·А 6 .

Из теоремы вытекает, что квадратичный множитель выразится формулой φ(x)=x 2 +(А 6 - А 5 -3) ·x+ А 4 . (4)

Определение: Последовательность целых чисел заданных следующими

соотношениями А 1 =5·(А 5 +4)-4·А 6 ; А 2 =4·(А 5 +3)-3·А 6 ; А 3 =3·(А 5 +2)-2·А 6 ; А 4 =2·(А 5 +1)-1·А 6 называется квадратичным Лагранжевым рядом

Определение : квадратичный Лагранжевый ряд называется «кандидатом» если все его числа А k являются делителями соответствующих значений функции f(x k), k=1;2;3;4;5;6.

Для всех кандидатов строим квадратичный множитель φ(x) по формуле (4) и проверяем его на делимость с f(x).

    Упрощенный вид квадратичных Лагранжевых рядов.

Формулы квадратичного Лагранжевого ряда можно упростить. Для этого буквой «d» обозначим разность А 5 - А 6 , тогда числа квадратичного Лагранжевого ряда будут выглядеть более простыми формулами и удобными для их построения:

Пример: А 5 =7; А 6 =10 составить квадратичный Лагранжевый ряд.

Найдем d=7-10=-3, тогда по формулам таблицы найдем числа данного ряда:

Ответ: 15; 10; 7; 6; 7; 10.

Рассмотрим пример разложения приведенного многочлена пятой степени на множители: f(x)=x 5 -5x 4 +13x 3 -22x 2 +27x-20 .

    По схеме Горнера найдем значения функции при х=-3; -2;-1; 0;1;2. Для этого составим таблицу:

  1. Определим, имеет ли данный многочлен, линейные множители. Для этого в строчку таблицы №3 запишем получившиеся значения функции. Из них выберем число, имеющее наименьшее число делителей. В нашем примере это число «2». Запишем в столбик все его целые делители. Для каждого делителя числа «2» в строчку запишем линейные Лагранжевые ряды. Из них выберем кандидатов и проверим на делимость с данным многочленом f(x).

Таблица №3:

В данной таблице №3 серым цветом отмечены клетки, в которых находятся числа, не являющиеся делителями соответствующих значений функции f(x). Пустые клетки заполнять нет необходимости, так как построенный квадратичный Лагранжевый ряд с числом в серой клетке заведомо не является «кандидатом». Из данной №3 таблицы видно, что «кандидатов» нет. Это значит что данный многочлен f(x)=x 5 -5x 4 +13x 3 -22x 2 +27x-20 на линейные множители не раскладывается.

    Определим, имеет ли данный многочлен, квадратичные множители. Для этого в строчку таблицы №4 запишем получившиеся значения функции. Из них выберем два числа, имеющие наименьшее число делителей. В нашем примере это числа «2» и «-6» запишем их делители в столбики. Для каждой пары делителей чисел «2» и «-6» в строчку запишем квадратичные Лагранжевые ряды. Из них выберем кандидатов и проверим их на делимость с данным многочленом f(x).

Таблица №4:

В данной таблице №4 мы видим двух «кандидатов». С их помощью по формуле φ(x)=x 2 +(А 6 - А 5 -3) ·x+ А 4 найдем квадратные множители: φ 1 (x)=x 2 -3х+ 4; φ 2 (x)=x 2 +x-4.

Проверка показывает, что один из двух множителей является истинным это φ 1 (x)=x 2 -3х+ 4, а другой множитель оказался посторонним.

Ответ: x 5 -5x 4 +13x 3 -22x 2 +27x-20=(x 2 -3х+ 4)·(x 3 -2x 2 +3x-5).

В данной таблице №4 получили 32 квадратичных Лагранжевых ряда. Это число определяется количеством различных пар делителей, как положительных, так и отрицательных, двух значений функции, которые расположены двумя столбиками по соседству.

    Уменьшение числа квадратичных Лагранжевых рядов.

Если значения функции число делителей, которых минимально, расположены не по соседству, то можно воспользоваться следующей теоремой:

Теорема 3 Пустьизвестны А 4 и А 6 тогда А 5 =(А 4 + А 6 ·1):2-1

Пустьизвестны А 3 и А 6 тогда А 5 =(А 3 + А 6 ·2):3-2

Пустьизвестны А 2 и А 6 тогда А 5 =(А 2 + А 6 ·3):4-3

Пустьизвестны А 1 и А 6 тогда А 5 =(А 1 + А 6 ·4):5-4.

Доказательство: докажем последнее равенство А 5 =(А 1 +А 6 ·4):5-4. По определению квадратичных Лагранжевых чисел, А 1 =5·(А 5 +4)-4·А 6 подставим это число в исходное равенство получим А 5 =(5·(А 5 +4)-4·А 6 +А 6 ·4):5-4=(5 ·А 5 +20):5-4=А 5 +4-4=А 5 что и требовалось доказать. Другие равенства доказываются аналогично.

Данная теорема позволяет уменьшить число квадратичных Лагранжевых рядов. Рассмотрим уже решенный нами примерf(x)=x 5 -5x 4 +13x 3 -22x 2 +27x-20

и решим его на случай когда мы рассматриваем квадратичные Лагранжевые ряды построенных с помощью делителей А 4 и А 6 .

Таблица №5:

(А 4 + А 6 ·1):2-1

В данной таблице №5 мы получили 24 квадратичных Лагранжевых ряда. Так как в формуле сумму А 4 и А 6 необходимо делить на 2, поэтому делители А 4 и А 6 должны быть либо оба четными, либо оба нечетными. За счет этого уменьшилось число квадратичных Лагранжевых рядов. Если использовать данную теорему 3 для записи квадратичных Лагранжевых рядов, построенных с помощью А 1 и А 6 , то число рядов уменьшится до 12.

Таблица №6:

В таблице №6 число квадратичных Лагранжевых рядов уменьшилось до 12, так как А 5 находится по формуле (4A 1 +A 6):5-4 и А 5 как целое число должно быть меньше или равно -6. Во всех таблицах черная выделенная строка является «действительным кандидатом». Остальные кандидаты являются «мнимыми».

Для многочлена шестой степени можно доказать, что квадратичный множитель можно найти по формуле: φ(x)=x 2 +(А 7 - А 6 - 5) ·x+ А 4 , где числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 ; А 7 образуют квадратичный Лагранжевый ряд.

    Выводы:

    Данный метод разложения, использующий ИМЛ является обобщением «схемы Горнера».

    Данным методом можно определить квадратичные множители для многочленов выше пятой степени.

    Данным методом можно исследовать свойства Лагранжевых чисел для определения кубических многочленов в разложении многочленов пятой и выше степени.

    Литература:

1. А. Н. Чеботарев «Основы теории Галуа», ОМТИ ГТТИ, 1934г., 1ч.

2. «Числа и многочлены», составитель А.А. Егоров - М.: бюро Квантум, 2000/ приложение к журналу «Квант» №6, 2000г.

полином, выражение вида

Axkyl┘..wm + Bxnyp┘..wq + ┘┘ + Dxrts┘..wt,

где х, у, ..., w ≈ переменные, а А, В, ..., D (коэффициенты М.) и k, l, ..., t (показатели степеней ≈ целые неотрицательные числа) ≈ постоянные. Отдельные слагаемые вида Ахkyl┘..wmназываются членами М. Порядок членов, а также порядок множителей в каждом члене можно менять произвольно; точно так же можно вводить или опускать члены с нулевыми коэффициентами, а в каждом отдельном члене ≈ степени с нулевыми показателями. В случае, когда М. имеет один, два или три члена, его называют одночленом, двучленом или трёхчленом. Два члена М. называются подобными, если в них показатели степеней при одинаковых переменных попарно равны. Подобные между собой члены

А"хkyl┘..wm, B"xkyl┘..wm, ┘.., D"xkyl┘..wm

можно заменить одним (приведение подобных членов). Два М. называются равными, если после приведения подобных все члены с отличными от нуля коэффициентами оказываются попарно одинаковыми (но, может быть, записанными в разном порядке), а также если все коэффициенты этих М. оказываются равными нулю. В последнем случае М. называется тождественным нулём и обозначают знаком 0. М. от одного переменного х можно всегда записать в виде

P(x) = a0xn+ a1xn-1 + ... + an-1x+ an,

где a0, a1,..., an ≈ коэффициенты.

Сумму показателей степеней какого-либо члена М. называют степенью этого члена. Если М. не тождественный нуль, то среди членов с отличными от нуля коэффициентами (предполагается, что все подобные члены приведены) имеются один или несколько наибольшей степени; эту наибольшую степень называют степенью М. Тождественный нуль не имеет степени. М. нулевой степени сводится к одному члену А (постоянному, не равному нулю). Примеры: xyz + х + у + z есть многочлен третьей степени, 2x + у ≈ z + 1 есть многочлен первой степени (линейный М.), 5x2 ≈ 2x2 ≈ 3х2 не имеет степени, т. к. это тождественный нуль. М., все члены которого одинаковой степени, называется однородным М., или формой; формы первой, второй и третьей степеней называются линейными, квадратичными, кубичными, а по числу переменных (два, три) двоичными (бинарными), тройничными (тернарными) (например, x2 + y2 + z2 ≈ ху ≈ yz ≈ xz есть тройничная квадратичная форма).

Относительно коэффициентов М. предполагается, что они принадлежат определённому полю (см. Поле алгебраическое), например полю рациональных, действительных или комплексных чисел. Выполняя над М. действия сложения, вычитания и умножения на основании переместительного, сочетательного и распределительного законов, получают снова М. Таким образом, совокупность всех М. с коэффициентами из данного поля образует кольцо (см. Кольцо алгебраическое) ≈ кольцо многочленов над данным полем; это кольцо не имеет делителей нуля, т. е. произведение М., не равных 0, не может дать 0.

Если для двух многочленов Р(х) и Q(x) можно найти такой многочлен R(x), что Р = QR, то говорят, что Р делится на Q; Q называется делителем, a R ≈ частным. Если Р не делится на Q, то можно найти такие многочлены Р(х) и S(x), что Р = QR + S, причём степень S(x) меньше степени Q(x).

Посредством повторного применения этой операции можно находить наибольший общий делитель Р и Q, т. е. такой делитель Р и Q, который делится на любой общий делитель этих многочленов (см. Евклида алгоритм). М., который можно представить в виде произведения М. низших степеней с коэффициентами из данного поля, называется приводимым (в данном поле), в противном случае ≈ неприводимым. Неприводимые М. играют в кольце М. роль, сходную с простыми числами в теории целых чисел. Так, например, верна теорема: если произведение PQ делится на неприводимый многочлен R, a P на R не делится, то тогда Q должно делиться на R. Каждый М. степени, большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени). Например, многочлен x4 + 1, неприводимый в поле рациональных чисел, разлагается на два множителя

в поле действительных чисел и на четыре множителя ═в поле комплексных чисел. Вообще каждый М. от одного переменного х разлагается в поле действительных чисел на множители первой и второй степени, в поле комплексных чисел ≈ на множители первой степени (основная теорема алгебры). Для двух и большего числа переменных этого уже нельзя утверждать; например, многочлен x3 + yz2 + z3 неприводим в любом числовом поле.

Если переменным х, у, ..., w придать определённые числовые значения (например, действительные или комплексные), то М. также получит определённое числовое значение. Отсюда следует, что каждый М. можно рассматривать как функцию соответствующих переменных. Эта функция непрерывна и дифференцируема при любых значениях переменных; её можно характеризовать как целую рациональную функцию, т. е. функцию, получающуюся из переменных и некоторых постоянных (коэффициентов) посредством выполненных в определённом порядке действий сложения, вычитания и умножения. Целые рациональные функции входят в более широкий класс рациональных функций, где к перечисленным действиям присоединяется деление: любую рациональную функцию можно представить в виде частного двух М. Наконец, рациональные функции содержатся в классе алгебраических функций.

К числу важнейших свойств М. относится то, что любую непрерывную функцию можно с произвольно малой ошибкой заменить М. (теорема Вейерштрасса; точная её формулировка требует, чтобы данная функция была непрерывна на каком-либо ограниченном, замкнутом множестве точек, например на отрезке числовой оси). Этот факт, доказываемый средствами математического анализа, даёт возможность приближённо выражать М. любую связь между величинами, изучаемую в каком-либо вопросе естествознания и техники. Способы такого выражения исследуются в специальных разделах математики (см. Приближение и интерполирование функций, Наименьших квадратов метод).

В элементарной алгебре многочленом иногда называются такие алгебраические выражения, в которых последним действием является сложение или вычитание, например

Лит. : Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Мишина А. П., Проскуряков И. В., Высшая алгебра, 2 изд., М., 1965.

- многочленами . В этой статье мы изложим все начальные и необходимые сведения о многочленах. К ним, во-первых, относится определение многочлена с сопутствующими определениями членов многочлена, в частности, свободного члена и подобных членов. Во-вторых, остановимся на многочленах стандартного вида, дадим соответствующее определение и приведем их примеры. Наконец, введем определение степени многочлена, разберемся, как ее найти, и скажем про коэффициенты членов многочлена.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Определение.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Записанное определение позволяет привести сколько угодно примеров многочленов. Любой из одночленов 5 , 0 , −1 , x , 5·a·b 3 , x 2 ·0,6·x·(−2)·y 12 , и т.п. является многочленом. Также по определению 1+x , a 2 +b 2 и - это многочлены.

Для удобства описания многочленов вводится определение члена многочлена.

Определение.

Члены многочлена – это составляющие многочлен одночлены.

Например, многочлен 3·x 4 −2·x·y+3−y 3 состоит из четырех членов: 3·x 4 , −2·x·y , 3 и −y 3 . Одночлен считается многочленом, состоящим из одного члена.

Определение.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

В школе наиболее часто приходится работать с линейным двучленом a·x+b , где a и b – некоторые числа, а x – переменная, а также с квадратным трехчленом a·x 2 +b·x+c , где a , b и c – некоторые числа, а x – переменная. Вот примеры линейных двучленов: x+1 , x·7,2−4 , а вот примеры квадратных трехчленов: x 2 +3·x−5 и .

Многочлены в своей записи могут иметь подобные слагаемые . Например, в многочлене 1+5·x−3+y+2·x подобными слагаемыми являются 1 и −3 , а также 5·x и 2·x . Они имеют свое особое название – подобные члены многочлена.

Определение.

Подобными членами многочлена называются подобные слагаемые в многочлене.

В предыдущем примере 1 и −3 , как и пара 5·x и 2·x , являются подобными членами многочлена. В многочленах, имеющих подобные члены, можно для упрощения их вида выполнять приведение подобных членов .

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Исходя из данного определения, можно привести примеры многочленов стандартного вида. Так многочлены 3·x 2 −x·y+1 и записаны в стандартном виде. А выражения 5+3·x 2 −x 2 +2·x·z и x+x·y 3 ·x·z 2 +3·z не являются многочленами стандартного вида, так как в первом из них содержатся подобные члены 3·x 2 и −x 2 , а во втором – одночлен x·y 3 ·x·z 2 , вид которого отличен от стандартного.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду .

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Определение.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Иными словами, если в записи многочлена стандартного вида есть число, то его называют свободным членом. Например, 5 – это свободный член многочлена x 2 ·z+5 , а многочлен 7·a+4·a·b+b 3 не имеет свободного члена.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов , находящихся в его составе.

Определение.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Приведем примеры. Степень многочлена 5·x 3 −4 равна 3 , так как входящие в его состав одночлены 5·x 3 и −4 имеют степени 3 и 0 соответственно, наибольшее из этих чисел есть 3 , оно и является степенью многочлена по определению. А степень многочлена 4·x 2 ·y 3 −5·x 4 ·y+6·x равна наибольшему из чисел 2+3=5 , 4+1=5 и 1 , то есть, 5 .

Теперь выясним, как найти степень многочлена произвольного вида.

Определение.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Пример.

Найдите степень многочлена 3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 .

Решение.

Сначала нужно представить многочлен в стандартном виде:
3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 = =(3·a 12 −2·a 12 −a 12)− 2·(a·a)·(b·b)·(c·c)+y 2 ·z 2 = =−2·a 2 ·b 2 ·c 2 +y 2 ·z 2 .

В полученный многочлен стандартного вида входят два одночлена −2·a 2 ·b 2 ·c 2 и y 2 ·z 2 . Найдем их степени: 2+2+2=6 и 2+2=4 . Очевидно, наибольшая из этих степеней равна 6 , она по определению является степенью многочлена стандартного вида −2·a 2 ·b 2 ·c 2 +y 2 ·z 2 , а значит, и степенью исходного многочлена. , 3·x и 7 многочлена 2·x−0,5·x·y+3·x+7 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

В этой статье мы разберемся с умножением чисел с разными знаками . Здесь мы сначала сформулируем правило умножения положительного и отрицательного числа, обоснуем его, а после этого рассмотрим применение данного правила при решении примеров.

Навигация по странице.

Правило умножения чисел с разными знаками

Умножение положительного числа на отрицательное, а также отрицательного на положительное, проводится по следующему правилу умножения чисел с разными знаками : чтобы умножить числа с разными знаками, надо умножить, и перед полученным произведением поставить знак минус.

Запишем данное правило в буквенном виде. Для любого положительного действительного числа a и действительного отрицательного числа −b справедливо равенство a·(−b)=−(|a|·|b|) , а также для отрицательного числа −a и положительного числа b справедливо равенство (−a)·b=−(|a|·|b|) .

Правило умножения чисел с разными знаками полностью согласуется со свойствами действий с действительными числами . Действительно, на их основе несложно показать, что для действительных и положительных чисел a и b справедлива цепочка равенств вида a·(−b)+a·b=a·((−b)+b)=a·0=0 , которая доказывает, что a·(−b) и a·b – противоположные числа, откуда следует равенство a·(−b)=−(a·b) . А из него следует справедливость рассматриваемого правила умножения.

Следует отметить, что озвученное правило умножения чисел с разными знаками справедливо как для действительных чисел, так и для рациональных чисел и для целых чисел. Это следует из того, что действия с рациональными и целыми числами обладают теми же свойствами, которые использовались при доказательстве выше.

Понятно, что умножение чисел с разными знаками по полученному правилу сводится к умножению положительных чисел.

Осталось лишь рассмотреть примеры применения разобранного правила умножения при умножении чисел с разными знаками.

Примеры умножения чисел с разными знаками

Разберем решения нескольких примеров умножения чисел с разными знаками . Начнем с простого случая, чтобы сосредоточиться на шагах правила, а не на вычислительных сложностях.

Выполните умножение отрицательного числа −4 на положительное число 5 .

По правилу умножения чисел с разными знаками нам сначала нужно перемножить модули исходных множителей. Модуль −4 равен 4 , а модуль 5 равен 5 , а умножение натуральных чисел 4 и 5 дает 20 . Наконец, осталось поставить знак минус перед полученным числом, имеем −20 . На этом умножение завершено.

Кратко решение можно записать так: (−4)·5=−(4·5)=−20 .

(−4)·5=−20 .

При умножении дробных чисел с разными знаками нужно уметь выполнять умножение обыкновенных дробей, умножение десятичных дробей и их комбинаций с натуральными и смешанными числами.

Проведите умножение чисел с разными знаками 0,(2) и.

Выполнив перевод периодической десятичной дроби в обыкновенную дробь, а также выполнив переход от смешанного числа к неправильной дроби, от исходного произведения мы придем к произведению обыкновенных дробей с разными знаками вида. Это произведение по правилу умножения чисел с разными знаками равно. Осталось лишь перемножить обыкновенные дроби в скобках, имеем .

.

Отдельно стоит сказать об умножении чисел с разными знаками, когда один или оба множителя являются

Теперь давайте разберемся с умножением и делением .

Предположим, нам нужно умножить +3 на -4. Как это сделать?

Давайте рассмотрим такой случай. Три человека залезли в долги, и у каждого по 4 доллара долга. Чему равен общий долг? Для того чтобы его найти, надо сложить все три долга: 4 доллара + 4 доллара + 4 доллара = 12 долларов. Мы с вами решили, что сложение трех чисел 4 обозначается как 3×4. Поскольку в данном случае мы говорим о долге, перед 4 стоит знак «-». Мы знаем, что общий долг равен 12 долларам, так что теперь наша задача имеет вид 3х(-4)=-12.

Мы получим тот же результат, если по условию задачи каждый из четырех человек имеет долг по 3 доллара. Другими словами, (+4)х(-3)=-12. А поскольку порядок сомножителей значения не имеет, получаем (-4)х(+3)=-12 и (+4)х(-3)=-12.

Давайте обобщим результаты. При перемножении одного положительного и одного отрицательного числа результат всегда будет отрицательным числом. Численная величина ответа будет той же самой, как и в случае положительных чисел. Произведение (+4)х(+3)=+12. Присутствие знака «-» влияет только на знак, но не влияет на численную величину.

А как перемножить два отрицательных числа?

К сожалению, на эту тему очень трудно придумать подходящий пример из жизни. Легко себе представить долг в сумме 3 или 4 доллара, но совершенно невозможно вообразить -4 или -3 человека, которые залезли в долги.

Пожалуй, мы пойдем другим путем. В умножении при изменении знака одного из множителей меняется знак произведения. Если мы меняем знаки у обоих множителей, мы должны дважды сменить знак произведения , сначала с положительного на отрицательный, а затем наоборот, с отрицательного на положительный, то есть у произведения будет первоначальный знак.

Следовательно, вполне логично, хотя немного странно, что (-3)х(-4)=+12.

Положение знака при умножении изменяется таким образом:

  • положительное число х положительное число = положительное число;
  • отрицательное число х положительное число = отрицательное число;
  • положительное число х отрицательное число = отрицательное число;
  • отрицательное число х отрицательное число = положительное число.

Иначе говоря, перемножая два числа с одинаковыми знаками, мы получаем положительное число . Перемножая два числа с разными знаками, мы получаем отрицательное число .

Такое же правило справедливо и для действия противоположного умножению – для.

Вы легко можете в этом убедиться, проведя обратные операции умножения . Если в каждом из примеров, приведенных выше, вы умножите частное на делитель, то получите делимое, и убедитесь, что оно имеет тот же самый знак, например (-3)х(-4)=(+12).

Поскольку скоро зима, то пора уже подумать о том, в что переобуть своего железного коня, что бы не скользить по льду и чувствовать себя уверено на зимних дорогах. Можно, например, взять шины йокогама на сайте: mvo.ru или какие-то другие, главное, что бы качественный, больше информации и цены вы можете узнать на сайте Mvo.ru.


В данной статье дается подробный обзор деления чисел с разными знаками . Сначала приведено правило деления чисел с разными знаками. Ниже разобраны примеры деления положительных чисел на отрицательные и отрицательных чисел на положительные.

Навигация по странице.

Правило деления чисел с разными знаками

В статье деление целых чисел было получено правило деления целых чисел с разными знаками . Его можно распространить и на рациональные числа , и на действительные числа , повторив все рассуждения из указанной статьи.

Итак, правило деления чисел с разными знаками имеет следующую формулировку: чтобы разделить положительное число на отрицательное или отрицательное число на положительное, надо делимого разделить на модуль делителя, и перед полученным числом поставить знак минус.

Запишем это правило деления с помощью букв. Если числа a и b имеют разные знаки, то справедлива формула a:b=−|a|:|b| .

Из озвученного правила понятно, что результатом деления чисел с разными знаками является отрицательное число. Действительно, так как модуль делимого и модуль делителя есть положительнее числа, то их частное есть положительное число, а знак минус делает это число отрицательным.

Отметим, что рассмотренное правило сводит деление чисел с разными знаками к делению положительных чисел.

Можно привести другую формулировку правила деления чисел с разными знаками: чтобы разделить число a на число b , нужно число a умножить на число b −1 , обратное числу b . То есть, a:b=a·b −1 .

Это правило можно использовать, когда есть возможность выходить за пределы множества целых чисел (так как далеко не каждое целое число имеет обратное). Иными словами, оно применимо на множестве рациональных, а также на множестве действительных чисел.

Понятно, это правило деления чисел с разными знаками позволяет от деления перейти к умножению.

Это же правило используется при делении отрицательных чисел .

Осталось рассмотреть, как данное правило деления чисел с разными знаками применяется при решении примеров.

Примеры деления чисел с разными знаками

Рассмотрим решения нескольких характерных примеров деления чисел с разными знаками , чтобы усвоить принцип применения правил из предыдущего пункта.

Разделите отрицательное число −35 на положительное число 7 .

Правило деления чисел с разными знаками предписывает сначала найти модули делимого и делителя. Модуль числа −35 равен 35 , а модуль числа 7 равен 7 . Теперь нам нужно разделить модуль делимого на модуль делителя, то есть, надо разделить 35 на 7 . Вспомнив, как выполняется деление натуральных чисел , получаем 35:7=5 . Остался последний шаг правила деления чисел с разными знаками – поставить минус перед полученным числом, имеем −5 .

Вот все решение: .

Можно было исходить из другой формулировки правила деления чисел с разными знаками. В этом случае сначала находим число, обратное делителю 7 . Этим числом является обыкновенная дробь 1/7 . Таким образом, . Осталось выполнить умножение чисел с разными знаками : . Очевидно, мы пришли к такому же результату.

(−35):7=−5 .

Вычислите частное 8:(−60) .

По правилу деления чисел с разными знаками имеем 8:(−60)=−(|8|:|−60|)=−(8:60) . Полученному выражению соответствует отрицательная обыкновенная дробь (смотрите знак деления как черта дроби), можно провести сокращение дроби на 4 , получаем .

Запишем все решение кратко: .

.

При делении дробных рациональных чисел с разными знаками их обычно делимое и делитель представляют в виде обыкновенных дробей. Это связано с тем, что с числами в другой записи (например, в десятичной) не всегда удобно выполнять деление.

Модуль делимого равен, а модуль делителя равен 0,(23) . Чтобы провести деление модуля делимого на модуль делителя, перейдем к обыкновенным дробям.