Что отражает экологическая пирамида. Экологические пирамиды биомассы и численности. Поток энергии - самый точный показатель

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГИМНАЗИЯ № 6

на тему «Классическое определение вероятности».

Выполнила ученица 8 «Б» класса

Климантова Александра.

Учитель по математике: Виденькина В. А.

Воронеж, 2008

Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек—от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат—исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

  1. событие А—выпадает цифра 1, 2, 3, 4, 5 или 6;
  2. событие В—выпадает цифра 7, 8 или 9;
  3. событие С—выпадает цифра 1.

Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это—достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы—невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие—это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие—это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная , а вероятность наступления невозможного события—как нулевая . Учитывая, что 100 % равно 1, люди договорились о следующем:

  1. вероятность достоверного события считается равной 1;
  2. вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется-теория вероятностей .

Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.

Классическая вероятностная схема

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;

2) принять предположение о равновероятности (равновозможности) всех этих исходов;

3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

4) найти частное ; оно и будет равно вероятности события А.

Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски-probabilite , по-английски-probability .В обозначении используется первая буква слова.

Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы

Р(А)=.

Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

Классическое определение вероятности

Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

Пример 1 . Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

Решение . Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

а) Ровно в одном из исходов произойдет интересующее нас событие А-выпадение числа 4. Значит, N(A)=1 и

P (A )= =.

б) Решение и ответ такие же, как и в предыдущем пункте.

в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,

N (B )=3 и P (B )==.

г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,

N (C ) =2 и Р(С)=.

д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается .

Ответ: а) ; б) ; в) ; г) ; д).

Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

Замечание 1 . Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд-нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что =0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна , это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.

Теория вероятностей возникла в XVII веке при анализе различных азартных игр. Неудивительно поэтому, что первые примеры носят игровой характер. От примеров с игральными кубиками перейдем к случайному вытаскиванию игральных карт из колоды.

Пример 2 . Из колоды в 36 карт случайным образом одновременно вытаскивают 3 карты. Какова вероятность того, что среди них нет пиковой дамы?

Решение . У нас имеется множество из 36 элементов. Мы производим выбор трех элементов, порядок которых не важен. Значит, возможно получение N=C исходов. Будем действовать по классической вероятностной схеме, т. е. предположим, что все эти исходы равновероятны.

Осталось вычислить нужную вероятность по классическому определению:

А чему равна вероятность того, что среди выбранных трех карт есть пиковая дама? Число всех таких исходов нетрудно посчитать, надо просто из всех исходов N вычесть все те исходы, в которых дамы пик нет, т. е. вычесть найденное в примере 3 число N(A). Затем эту разность N—N(A) в соответствии с классической вероятностной схемой следует поделить на N. Вот что получим:

Мы видим, что между вероятностями двух событий имеется определенная связь. Если событие А заключается в отсутствии дамы пик, а событие В состоит в ее наличии среди выбранных трех карт, то

Р(В)= 1—Р(А),

Р(А)+Р(В)=1.

К сожалению, в равенстве Р(А)+Р(В)=1 нет никакой информации о связи событий А и В между собой; эту связь нам приходится держать в уме. Удобнее было бы заранее дать событию В название и обозначение, явно указывающие на его связь с А.

Определение 1 . Событие В называют противоположным событию А и обозначают В=Ā, если событие В происходит тогда и только тогда, когда не происходит событие А.

Т еорема 1 . Для нахождения вероятности противоположного события следует из единицы вычесть вероятность самого события: Р(Ā)= 1—Р(А). В самом деле,

На практике вычисляют то, что проще найти: или Р(А), или Р(Ā). После этого пользуются формулой из теоремы и находят, соответственно, или Р(Ā)= 1—Р(А), или Р(А)= 1—Р(Ā).

Часто используется способ решения той или иной задачи «перебором случаев», когда условия задачи разбиваются на взаимоисключающие друг друга случаи, каждый из которых рассматривается отдельно. Например, «направо пойдешь—коня потеряешь, прямо пойдешь—задачу по теории вероятности решать будешь, налево пойдешь—…». Или при построении графика функции у=│х+1│—│2х—5│расматривают случаи х

Пример 3 . Из 50 точек 17 закрашены в синий цвет, а 13—в оранжевый цвет. Найти вероятность того, что случайным образом выбранная точка окажется закрашенной.

Решение . Всего закрашено 30 точек из 50. Значит, вероятность равна = 0,6.

Ответ: 0,6.

Рассмотрим, однако, этот простой пример более внимательно. Пусть событие А состоит в том, что выбранная точка—синяя, а событие В состоит в том, что выбранная точка—оранжевая. По условию, события А и В не могут произойти одновременно.

Обозначим буквой С интересующее нас событие. Событие С наступает тогда и только тогда, когда происходит хотя бы одно из событий А или В . Ясно, что N(C)= N(A)+N(B).

Поделим обе части этого равенства на N—число всех возможных исходов данного опыта; получим

Мы на простом примере разобрали важную и часто встречающуюся ситуацию. Для нее есть специальное название.

Определение 2 . События А и В называют несовместными , если они не могут происходить одновременно.

Теорема 2 . Вероятность наступления хотя бы одного из двух несовместных событий равна сумме их вероятностей.

При переводе этой теоремы на математический язык, возникает необходимость как-то назвать и обозначить событие, состоящее в наступлении хотя бы одного из двух данных событий А и В. Такое событие называют суммой событий А и В и обозначают А+В.

Если А и В несовместны, то Р(А+В)= Р(А)+Р(В).

В самом деле,

Несовместность событий А и В удобно иллюстрировать рисунком. Если все исходы опыта—некоторое множество точек на рисунке, то события А и В—это некоторые подмножества данного множества . Несовместность А и В означает, что эти два подмножества не пересекаются между собой. Типичный пример несовместных событий—любое событие А и противоположное событие Ā.

Разумеется, указанная теорема верна и для трех, и для четырех, и для любого конечного числа попарно несовместных событий. Вероятность суммы любого числа попарно несовместных событий равна сумме вероятностей этих событий. Это важное утверждение как раз и соответствует способу решения задач «перебором случаев».

Между событиями, происходящими в результате некоторого опыта, и между вероятностями этих событий могут быть какие-то соотношения, зависимости, связи и т. п. Например, события можно «складывать», а вероятность суммы несовместных событий равна сумме их вероятностей.

В заключение обсудим следующий принципиальный вопрос: можно ли доказать , что вероятность выпадения «решки» при одном бросании монеты равна

Ответ отрицательный. Вообще говоря, сам вопрос не корректен, неясен точный смысл слова «доказать». Ведь доказываем мы что-либо всегда в рамках некоторой модели , в которой уже известны правила, законы, аксиомы, формулы, теоремы и т. п. Если речь идет о воображаемой, «идеальной» монете, то потому-то она и считается идеальной, что, по определению , вероятность выпадения «решки» равна вероятности выпадения «орла». А, в принципе, можно рассмотреть модель, в которой вероятность выпадения «решки» в два раза больше вероятности выпадения «орла» или в три раза меньше и т. п. Тогда возникает вопрос: по какой причине из различных возможных моделей бросания монеты мы выбираем ту, в которой оба исхода бросания равновероятны между собой?

Совсем лобовой ответ таков: «А нам так проще, понятнее и естественнее!» Но есть и более содержательные аргументы. Они приходят из практики. В подавляющем большинстве учебников по теории вероятностей приводят примеры французского естествоиспытателя Ж. Бюффона (XVIII в.) и английского математика-статистика К. Пирсона (конец XIX в.), которые бросали монету, соответственно, 4040 и 24000 раз и подсчитывали число выпадений «орла» или «решки». У них «решка» выпала, соответственно, 1992 и 11998 раз. Если подсчитать частоту выпадения «решки», то получится = =0,493069… у Бюффона и = 0,4995 у Пирсона. Возникает естественное предположение , что при неограниченном увеличении числа бросаний монеты частота выпадения «решки», как и частота выпадения «орла», все больше и больше будет приближаться к 0,5. Именно это предположение, основанное на практических данных, является основой выбора в пользу модели с равновероятными исходами.

Сейчас можно подвести итоги. Основное понятие—вероятность случайного события , подсчет которой производится в рамках простейшей модели—классической вероятностной схемы . Важное значение и в теории, и в практике имеет понятие противоположного события и формула Р(Ā)= 1—Р(А) для нахождения вероятности такого события.

Наконец, мы познакомились с несовместными событиями и с формулами.

Р(А+В)= Р(А)+Р(В),

Р(А+В+С)= Р(А)+Р(В)+Р(С),

позволяющими находить вероятности суммы таких событий.

Список литературы

1.События. Вероятности. Статистическая обработка данных: Доп. параграфы к курсу алгебры 7—9 кл. общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов.—4-е изд.—М.: Мнемозина, 2006.—112 с.: ил.

2.Ю. Н. Макарычев, Н. Г. Миндюк «Алгебра. Элементы статистики и теории вероятностей».—Москва, «Просвещение», 2006.

Полезная страница? Сохрани или расскажи друзьям

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами или элементарными событиями . Исход называется благоприятствующим появлению события $А$, если появление этого исхода влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу $$P(A)=\frac{m}{n}. \quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$ .

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров...)
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей...)
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов...)

Примеры решений задач на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m =n =10. Следовательно, Р (А )=1. Событие А достоверное .

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m =0, n =15. Следовательно, искомая вероятность р =0. Событие, заключающееся в вынимании синего шара, невозможное .

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение . Количество элементарных исходов (количество карт) n =36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А , m =9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Задачи на классическое определение вероятности.
Примеры решений

На третьем уроке мы рассмотрим различные задачи, касающиеся непосредственного применения классического определения вероятности. Для эффективного изучения материалов данной статьи рекомендую ознакомиться с базовыми понятиями теории вероятностей и основами комбинаторики . Задача на классическое определение вероятности с вероятностью, стремящейся к единице, будет присутствовать в вашей самостоятельной/контрольной работе по терверу, поэтому настраиваемся на серьёзную работу. Вы спросите, чего тут серьёзного? …всего-то одна примитивная формула . Предостерегаю от легкомыслия – тематические задания достаточно разнообразны, и многие из них запросто могут поставить в тупик. В этой связи помимо проработки основного урока, постарайтесь изучить дополнительные задачи по теме, которые находятся в копилке готовых решений по высшей математике . Приёмы решения приёмами решения, а «друзей» всё-таки «надо знать в лицо», ибо даже богатая фантазия ограничена и типовых задач тоже хватает. Ну а я постараюсь в хорошем качестве разобрать максимальное их количество.

Вспоминаем классику жанра:

Вероятность наступления события в некотором испытании равна отношению , где:

– общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

И сразу незамедлительный пит-стоп. Понятны ли вам подчёркнутые термины? Имеется ввиду чёткое, а не интуитивное понимание. Если нет, то всё-таки лучше вернуться к 1-й статье по теории вероятностей и только после этого ехать дальше.

Пожалуйста, не пропускайте первые примеры – в них я повторю один принципиально важный момент, а также расскажу, как правильно оформлять решение и какими способами это можно сделать:

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

– извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30 шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: – из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
– вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность, на которой я уже заострял внимание в первой статье по теории вероятностей . Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

– из урны будет извлечён красный шар;
– из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию – 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

В принципе, ответ можно записать и подробнее, но лично я привык ставить туда только числа – по той причине, что когда начинаешь «штамповать» задачи сотнями и тысячами, то стремишься максимально сократить запись решения. К слову, о краткости: на практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
– вероятность того, то из урны будет извлечён белый шар;
– вероятность того, то из урны будет извлечён красный шар;
– вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Однако если в условии несколько пунктов, то решение зачастую удобнее оформить первым способом, который отнимает чуть больше времени, но зато всё «раскладывает по полочкам» и позволяет легче сориентироваться в задаче.

Разминаемся:

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?

Выберите целесообразный вариант оформления и сверьтесь с образцом внизу страницы.

В простейших примерах количество общих и количество благоприятствующих исходов лежат на поверхности, но в большинстве случаев картошку приходится выкапывать самостоятельно. Каноничная серия задач о забывчивом абоненте:

Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них – ноль, а другая – нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль – это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90

И подсчитываем их – всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
– вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Десятичные дроби в теории вероятностей смотрятся вполне уместно, но можно придерживаться и традиционного вышматовского стиля, оперируя только обыкновенными дробями.

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин-код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр – то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже – бОльшее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;
б) не более четырёх очков;
в) от 3 до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где – цифра, выпавшая на 1-м кубике, – цифра, выпавшая на 2-м кубике. Например:

– на первом кубике выпало 3 очка, на втором – 5 очков, сумма очков: 3 + 5 = 8;
– на первом кубике выпало 6 очков, на втором – 1 очко, сумма очков: 6 + 1 = 7;
– на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую – две «шестёрки».

а) Рассмотрим событие: – при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
– искомая вероятность.

б) Рассмотрим событие: – выпадет не более 4 очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия – подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
– вероятность того, что выпадет не более 4 очков.

в) Рассмотрим событие: – выпадет от 3 до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : – выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
– вероятность того, что выпадет меньше трёх или больше 9 очков.

Помимо прямого перечисления и подсчёта исходов, в ходу также различные комбинаторные формулы . И снова эпичная задача про лифт:

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах
б) двое выйдут на одном этаже;
в) все выйдут на одном этаже.

Наше увлекательное занятие подошло к концу, и напоследок ещё раз настоятельно рекомендую если не прорешать, то хотя бы разобраться в дополнительных задачах на классическое определение вероятности . Как я уже отмечал, «набивка руки» тоже имеет значение!

Далее по курсу – Геометрическое определение вероятности и Теоремы сложения и умножения вероятностей и… везения в главном!

Решения и ответы :

Задача 2: Решение : 30 – 5 = 25 холодильников не имеют дефекта.

– вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4 мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):
7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558
Благоприятствующий исход один (правильный пин-код).
Таким образом, по классическому определению:
– вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2 кубиках.

а) Рассмотрим событие: – при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов, по классическому определению вероятности:
, т.е. это событие является невозможным.

б) Рассмотрим событие: – при броске двух игральных костей произведение очков окажется не менее 20. Данному событию благоприятствуют следующие исходы:

Итого: 8
По классическому определению:
– искомая вероятность.

в) Рассмотрим противоположные события:
– произведение очков будет чётным;
– произведение очков будет нечётным.
Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.
По классическому определению вероятности:
Противоположные события образуют полную группу, поэтому:
– искомая вероятность.

Ответ :

Задача 8: Решение : вычислим общее количество исходов: способами могут упасть 10 монет.
Другой путь: способами может упасть 1-я монета и способами может упасть 2-я монета и и способами может упасть 10-я монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: – на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: – на 9 монетах выпадет орёл, а на одной – решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: – орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

Разберём классическое определение вероятности при помощи формул и примеров.

Случайные события называются несовместимыми , если они не могут происходить одновременно. Например, когда мы подкидываем монету, выпадет что-то одно – «герб» или число» и они не могут появится одновременно, так как логично, что это невозможно. Несовместимыми могут быть такие события, как попадание и промах после сделанного выстрела.

Случайные события конечного множества образовывают полную группу попарно несовместимых событий, если при каждом испытании появляется одна, и только одна из этих событий – единственно возможные.

Рассмотрим всё тот же пример с подкидыванием монеты:

Первая монета Вторая монета События

1) «герб» «герб»

2) «герб» «число»

3) «число» «герб»

4) «число» «число»

Или сокращённо – «ГГ», – «ГЧ», – «ЧГ», – «ЧЧ».

События называются равновозможными , если условия исследования обеспечивают одинаковую возможность появления каждой из них.

Как вы понимаете, когда подбрасываете симметричную монету, тогда у неё одинаковые возможности, и есть вероятность, что выпадет как «герб», так и «число». Это же касается подбрасывания симметричного игрального кубика, так как есть вероятность того, что могут появится грани с любым числом 1, 2, 3, 4, 5, 6.

Допустим, что теперь кубик подбрасываем со смещением центра тяжести, например, в сторону грани с цифрой 1, тогда чаще всего будет выпадать противоположная грань, то есть грань с другой цифрой. Таким образом, в этой модели возможности появления для каждой из цифр от 1 до 6 будут разными.

Равновозможные и единственно возможные случайные события называются случаями.

Есть случайные события, которые относятся к случаям, а есть случайные события, которые не относятся к случаям. Ниже на примерах рассмотрим эти события.

Те случаи, в результате которых случайное событие появляется, называются благоприятными случаями для этого события.

Если обозначить через , которые влияют на событие при всех возможных случаях, а через – вероятность случайного события , тогда можно записать известное классическое определение вероятности:

Определение

Вероятность события называют отношения числа благоприятных этому событию случаев, к общему числу всех возможных случаев, то есть:

Свойства вероятности

Классическая вероятность рассмотрена, а теперь разберём основные и важные свойства вероятности.

Свойство 1. Вероятность достоверного события равняется единице.

Например, если в ведёрке все шариков белые, тогда событию , наугад выбрать белый шарик, влияют случаев, .

Свойство 2. Вероятность невозможного события равняется нулю.

Свойство 3. Вероятностью случайного события есть положительное число:

Значит, вероятность любого события удовлетворяет неравенство:

Теперь решим несколько примеров на классическое определение вероятности.

Примеры классического определения вероятности

Пример 1

Задача

В корзине 20 шариков, из них 10 белых, 7 красных и 3 чёрных. Наугад выбирается один шарик. Выбран белый шарик (событие ), красный шарик (событие ) и чёрный шарик (событие ). Найти вероятность случайных событий .

Решение

Согласно условию задачи, способствуют , а случаев из возможных, поэтому по формуле (1):

– вероятность белого шарика.

Аналогично для красного:

И для чёрного: .

Ответ

Вероятность случайного события , , .

Пример 2

Задача

В ящике лежат 25 одинаковых электроламп, из них 2 бракованные. Найти вероятность того, что наугад выбранная электролампа не бракованная.

Решение

По условию задачи все лампы одинаковые и выбирается только одна. Всего возможностей выбрать . Среди всех 25 лампа две бракованные, значит, оставшихся пригодных лампа . Поэтому по формуле (1) вероятность выбора пригодной электролампы (событие ) равняется:

Ответ

Вероятность того, что наугад выбранная электролампа не бракованная = .

Пример 3

Задача

Наугад подбрасываются две монеты. Найти вероятность таких событий:

1) – на обеих монетах выпало по гербу;

2) – на одной из монет выпал герб, а на второй – число;

3) – на обеих монетах выпали числа;

4) – хотя бы один раз выпал герб.

Решение

Здесь имеем дело с четырьмя событиями . Установим, какие случаи способствуют каждой из них. Событию способствует один случай, это когда на обеих монетах выпал герб (сокращённо «ГГ»).

Чтобы разобраться с событием , представим, что одна монета серебряная, а вторая – медная. При подбрасывании монет могут быть случаи:

1) на серебряной герб, на медной – число (обозначим – «ГЧ»);

2) на серебряной число, на медной – герб ( – «ЧГ»).

Значит, событию способствуют случаи и .

Событию способствует один случай: на обеих монетах выпали числа – «ЧЧ».

Таким образом, события или (ГГ, ГЧ, ЧГ, ЧЧ) образовывают полную группу событий, все эти события несовместимы, так как в результате подбрасывания происходит только одна из них. Кроме того, для симметричных монет все четыре события равновозможные, поэтому их можно считать случаями. Всех возможных событий – четыре .

Событию способствует только одно событие, поэтому его вероятность равняется:

Событию способствуют два случая , поэтому:

Вероятность события такая же, как и для :

Событию способствуют три случая: ГГ, ГЧ, ЧГ и поэтому:

Так как рассмотрены события ГГ, ГЧ, ЧГ, ЧЧ, которые равновозможные и создают полную группу событий, тогда появление любой из них – это достоверное событие (обозначим её буквой , которой способствуют все 4 случая . Поэтому вероятность:

Значит, подтверждается первое свойство вероятности.

Ответ

Вероятность события .

Вероятность события .

Вероятность события .

Вероятность события .

Пример 4

Задача

Подкидываются два игральных кубика с одинаковой и правильной геометрической формой. Найти вероятность всех возможных сумм на обеих гранях, что выпадают.

Решение

Чтобы было удобнее решать задачу, представьте, что один кубик белый, а второй – чёрный. С каждой из шести граней белого кубика и также может выпасть одна из шести граней чёрного кубика, поэтому всех возможных пар будет .

Так как возможность появления граней на отдельном кубике одинаковая (кубики правильной геометрической формы!), тогда одинаковой будет возможность появления каждой пары граней, причём, в результате подбрасывания выпадает только одна из пар. Значи события несовместимы, единовозможные. Это случаи, и всех возможных случаев – 36.

Теперь рассмотрим возможность значения суммы на гранях. Очевидно, что самая маленькая сумма 1 + 1 = 2, а самая большая 6 + 6 = 12. Оставшаяся часть суммы вырастает на единицу, начиная со второй. Обозначим событий, индексы которых равняются сумме очков, что выпали на гранях кубиков. Для каждой из этих событий выпишем благоприятные случаи при помощи обозначений , где – сумма, – очки на верхней грани белого кубика и – очки на грани чёрного кубика.

Значит, для события:

для – один случай (1 + 1);

для – два случая (1 + 2; 2 + 1);

для – три случая (1 + 3; 2 + 2; 3 + 1);

для – четыре случая (1 + 4; 2 + 3; 3 + 2; 4 + 1);

для – пять случаев (1 + 5; 2 + 4; 3 + 3; 4 + 2; 5 + 1);

для – шесть случаев (1 + 6; 2 + 5; 3 + 4; 4 + 3; 5 + 2; 6 + 1);

для – пять случаев (2 + 6; 3 + 5; 4 + 4; 5 + 3; 6 + 2);

для – четыре случая (3 + 6; 4 + 5; 5 + 4; 6 + 3);

для – три случая (4 + 6; 5 + 5; 6 + 4);

для – два случая (5 + 6; 6 + 5);

для – один случай (6 + 6).

Таким образом значения вероятности такие:

Ответ

Пример 5

Задача

Троим участникам перед фестивалем предложили тянуть жребий: каждый из участников по очереди подходит к ведёрку и наугад выбирает одну из трёх карточек с номерами 1, 2 и 3, что означает порядковый номер выступления данного участника.

Найти вероятность таких событий:

1) – порядковый номер в очереди совпадает с номером карточки, то есть порядковым номером выступления;

2) – ни один номер в очереди не совпадает с номером выступления;

3) – только один из номеров в очереди совпадает с номером выступления;

4) – хотя бы один из номеров в очереди совпадёт с номером выступления.

Решение

Возможными результатами выбора карточек – это перестановки из трёх элементов , количество таких перестановок равняется . Каждая из перестановок и есть событие. Обозначим эти события через . Каждому событию припишем в скобках соответствующую перестановку:

; ; ; ; ; .

Перечисленные события равновозможные и единовозможные, то есть, это и есть случаи. Обозначим так: (1ч, 2ч, 3ч) – соответствующие номера в очереди.

Начнём с события . Благоприятный только один случай поэтому:

Благоприятными для события – два случая и , поэтому:

Событию способствуют 3 случая: , поэтому:

Событию , кроме , способствует ещё и , то есть:

Ответ

Вероятность события – .

Вероятность события – .

Вероятность события – обновлено: Сентябрь 15, 2017 автором: Научные Статьи.Ру