Как происходит эволюция. Как происходила эволюция вселенной. Матричное копирование с ошибками

Ч А С Т Ь 3

К А К П Р О И С Х О Д И Т
Э В О Л Ю Ц И Я?

В основе теории эволюции лежит то утверждение, что все ныне существующие растения и животные миллиарды лет тому назад имели единого родона- чальника - живую клетку.

Развитие заключается, следовательно, в движении от простого к сложному. В нём, этом движении - сущность теории; и оно же используется как доказательство эволюции. Не будь усложнений, не было бы и эволюции. И если бы на заре жизни возникли одноклеточные животные, они такими бы и остались по сей день.

„Рабочим инструментом" эволюции был, по утверждению её сторонников, естественный отбор. Менялись случайным образом все организмы - но выживали только те, чьи изменения оказывались полезными в борьбе за существование. Мы ещё будем говорить об этом, а сейчас напомним только общеизвестное: доля правды есть в любой неправде; иначе кто бы в неё поверил! Это столь же верно и в отношении теории эволюции.

Естественный отбор действительно существует в природе - но отнюдь не как универсальный метод, посредством которого образовались все современные растения и животные. Утверждать подобное означало бы утверждать: грязь коричневая, следовательно, всё коричневое - грязь.

Разнообразие существующих типов растений и животных лучше всего объяснено в Библии.

Там сказано, что Бог создал разные типы животных и растений, которые затем размножились. Тогда только пришёл естественный отбор, принеся с собой появление разнообразных вариаций в пределах существующих пород.

Но утверждать, что посредством его все сложнейшим образом устроенные живые существа развились из одной-единственной клетки - нелогично, по меньшей мере.

Задумывались ли вы о том, что естественный отбор в принципе не может иметь никакого отношения к возникновению живых существ? Ведь чтобы началась борьба за существование, уже должны быть в наличии хотя бы два участника этой борьбы. Борьбу без участников (разгоревшуюся до их появления) трудновато себе представить.


МЕХАНИЗМЫ ЭВОЛЮЦИИ

Если эволюция действительно когда-то была, она должна была иметь в своём распоряжении разнообразные биологические средства. Естественно, учёные много думали об этом, ставили эксперименты.

Ламарк выдвинул идею, что организм приспосабливается к окружающей среде, а затем его потомки наследуют приобретённые свойства.

Ещё одна мысль заключалась в том, что живые существа развивают новые органы в тот момент, когда возникает в этом нужда. Чем она больше, тем шире идёт процесс.

Прекрасный метод!
Одна только неувязка: процессы в действительности идут совсем не так.

Когда наука обратилась к экспериментам, выяснилось, что приобретённые изменения потомкам не передаются. Иначе вы могли бы, не упражняясь, иметь сильные мускулы - от отца, который развил их тяжёлой работой. А если вы ещё владеете искусством игры на рояле, то вашим детям - прямая дорога в музыканты, хоть бы они часа не провели за инструментом. И так далее.

Но опыт учит, что каждое поколение все навыки, даже мелкие, должно приобретать само...

Хотя время от времени тот или иной учёный объявляет, что ему удалось добиться передачи по наследству некоторых приобретённых свойств - незначительных, пока что...

Во времена Дарвина был широко распространён взгляд, что приспосабливание к окружающей среде с передачей по наследству приобретённых свойств есть могучий движущий элемент эволюции.

Нынешняя наука от этого отказалась.
Основной упор в своей теории Дарвин сделал на борьбу за существование, с выживанием наиболе приспособленных. Благоприятные изменения помогут живому существу уцелеть и передадутся по наследству. Идея как будто бы неплохая - но вот беда: законы наследственности не позволяют ей реализоваться.

В самом начале нашего века широкое признание получили работы Грегора Менделя, отца генетики Изучение законов генетики, широко проводимое тех пор, показало, что они не подтверждают теории наследования приобретённых свойств. А почему - давайте посмотрим.


ЗАКОНЫ МЕНДЕЛЯ

1. Закон расщепления.
Гибриды первого поколения, унаследовавшие доминантные признаки (свойства), при дальнейшем размножении расщепляются; в их потомстве снова появляются особи с рецессивными признаками.

2. Закон независимого распределения генов.
Расщепление по каждой паре признаков идёт независимо от других пар признаков.

ПОЛИПЛОИДИЯ

На первый взгляд этот природный феномен как будто бы увеличивает шансы на то, что эволюция могла произойти.

Он заключается в том, что клетка получает при оплодотворении больше хромосом, чем обычно. В итоге при её делении образуется больше клеток.

Эксперименты с полиплоидией проводить нетрудно. Есть химическое вещество - колхицин - которое вызывает её.

В результате полиплоидии размеры растений становятся очень большими. Полиплоидные цветы и фрукты значительно превосходят по размерам обычные. Что и используется в садо- и цветоводстве. Скрещивая между собой полиплоидные растения, можно получать то, что называют иногда новыми видами. (Потому что будучи способными к размножению, они не дают потомства при скрещивании с растениями, от которых произошли.) Но в животноводстве случаи полиплоидии очень редки.

И, конечно же, она ничего не добавляет к пониманию механизма эволюции. Это просто удвоение, утроение (и так далее) тех же самых хромосом, что уже были.


МУТАЦИИ

Только тем, что у эволюционистов уже не осталось выбора, можно объяснить их обращение к мутациям как к инструменту эволюции.

Мутации взяты не потому, что в этом есть логика, а потому, что нет других средств. Все иные варианты оказались несостоятельными, поскольку они ничего не добавляют, а лишь перетасовывают уже имеющиеся характеристики, запрограммированные в механизме наследственности.

Ядро каждой клетки - от простейшей до сложнейшей - содержит в себе хромосомы, внутри которых имеются спиральные нити. (Они скручены наподобие винтовой лестницы.) Материал нитей - дезоксирибонуклеиновая кислота (ДНК, сокращённо). Здесь-то и содержатся гены - носители наследственных признаков и контролёры химических реакций в клетках.

В неизменяемом виде гены передаются из поколения в поколение.

Но иногда в структуре гена происходят изменения. Меняется его химический состав. Это и есть мутации.

Преобразования генной структуры ведут, в свою очередь, к физическим и физиологическим изменениям в организме.

Большинство мутаций - вредно. Многие - смертельны.

Мутации могут оставаться незамеченными до тех пор, пока в организме не будет двух повреждённых парных генов. С одним повреждённым геном организм выживает - но передаёт его по наследству. Это характерно и для растений, и для животных, и для человека.

Сравним ДНК с лентой компьютера, где пробита программа, по которой работает завод-автомат. Гены - это отдельные участки ленты. Информация на заводе передаётся отдельным станкам; в клетке - посредством ещё одного вещества - рибонуклеиновой кислоты (РНК) - в „машинную часть". И тогда здесь начинают вырабатываться тысячи сложнейших веществ, необходимых для жизни клетки. В организмах высшего порядка (человек, животные) вырабатываемые вещества поступают во все клетки тела.

Копии живой „компьютерной ленты" (ДНК) передаются от родителей ребёнку. И в новом организме немедленно начинают работать „новые заводы".

Вообразим, что наш завод-автомат делает игрушечные мотороллеры. В компьютерной ленте случилась ошибка. Из цеха стали выходить машинки с поломанными рулями, без передних фар - и тому подобное. Такое представить несложно...

Но гораздо труднее вообразить, что случайная ошибка привела к изготовлению превосходной шины, которая была помещена в очень удобное место...

А теперь попробуйте поверить, что такие вот случайные ошибки в ленте заставят завод перейти от выпуска игрушечных мотороллеров к выпуску настоящих. А затем - автомобилей. А затем - реактивных самолётов.

Легко ли поверить в такое?
Да ничуть не труднее, чем в то, что случайные мутации превратили клетку в рыбу; рыбу - в пресмыкающееся; пресмыкающееся - в птицу; птицу - в млекопитающее...

Вот ещё одно сравнение.
Машинистки перепечатывают книгу: „Конструкция моторной лодки". Атеист хочет, чтобы мы поверили: если они будут продолжать свою работу бесконечно, их ошибки постепенно изменят содержание книги, сделают его несравнимо более сложным. Скажем, превратят книгу в руководство по постройке атомных подводных лодок...

Вот где камень преткновения для материалиста!

Ведь каждый знает, что бесконечное число ошибок превратит книгу попросту в чепуху. А материалист верит, что вместо этого содержание книги станет таким, как если бы её писали самые умные люди в мире. Столь же возможно и превращение генетического кода морского ежа, после увеличения и усложнения, в генетический код человека.

КАК ВОЗНИКЛИ ОРГАНЫ

Дарвин сказал:
„Если можно было бы доказать, что любой из ныне существующих сложных органов сформировался не в результате многочисленных, благоприятных мелких изменений, моя теория рухнула бы полностью."

Для меня совершенно очевидно, что эту задачу решил никакой не терапсид, а Создатель. Он предвидел потребность и предусмотрел все детали. И какой бы орган ни взялись мы рассматривать, объяснить его развитие с позиций теории эволюции невозможно.


Потомство живых существ очень похоже на родителей. Однако если среда обитания живых организмов меняется, они тоже могут существенно измениться. К примеру, если климат постепенно становится холоднее, то некоторые виды могут от поколения к поколению обрастать все более густой шерстью. Этот процесс называется эволюцией . За миллионы лет эволюции мелкие изменения, накапливаясь, могут приводить к возникновению новых видов растений и животных, резко отличающихся от своих предков.

Как происходит эволюция?

В основе эволюции лежит естественный отбор. Он происходит так. Все животные или растения, принадлежащие к одному виду, все же слегка отличаются друг от друга. Некоторые из этих отличий позволяют их обладателям лучше приспосабливаться к условиям жизни, нежели их сородичам. Например, у какого-то оленя особенно быстрые ноги, и ему каждый раз удается убежать от хищника. У такого оленя больше шансов выжить и обзавестись потомством, а способность быстро бегать может передаться его детенышам, или, как говорят, унаследоваться ими.

Эволюция создала бесчисленное множество способов приспособления к трудностям и опасностям жизни на Земле. Например, семена конского каштана со временем приобрели оболочку, покрытую острыми колючками. Колючки защищают семя, когда оно падает с дерева на землю.

Какова скорость эволюции?


Прежде у этих бабочек были светлые крылышки. Они прятались от врагов на стволах деревьев с такой же светлой корой. Однако около 1% этих бабочек имели темные крылышки. Естественно, птицы сразу их замечали и, как правило, съедали раньше других

Обычно эволюция протекает очень медленно. Но бывают случаи, когда какой-либо вид животных претерпевает стремительные изменения и затрачивает на это не тысячи и миллионы лет, а гораздо меньше. К примеру, некоторые бабочки за последние двести лет изменили свою окраску, чтобы приспособиться к новы условиям жизни в тех районах Европы, где возникло множество промышленных предприятий.

Около двухсот лет назад в Западной Европе начали строить заводы, работающие на угле. Дым из заводских труб содержал сажу, которая оседала на стволах деревьев, и они чернели. Теперь оказались заметнее светлые бабочки. А немногие прежде бабочки с темной окраской крылышек выжили, ибо птицы их уже не замечали. От них произошли другие бабочки с такими же темными крылышками. И теперь большинство бабочек этого вида, обитающих в промышленных районах, имеют темные крылышки.

Почему некоторые виды животных вымирают?

Некоторые живые существа неспособны эволюционировать, когда среда их обитания резко изменяется, и в результате вымирают. Скажем, огромные волосатые животные, похожие на слонов — мамонты, скорее всего, вымерли оттого, что климат на Земле в ту пору стал контрастнее: летом слишком жарко, а зимой слишком холодно. К тому же их численность сократилась из-за усиленной охоты на них первобытного человека. А вслед за мамонтами вымерли и саблезубые тигры — ведь их громадные клыки были приспособлены к охоте лишь на крупных животных вроде мамонтов. Более мелкие животные были для саблезубых тигров недоступны, и, оставшись без добычи, они исчезли с лица нашей планеты.

Откуда мы знаем, что человек тоже эволюционировал?

Большинство ученых полагает, что человек произошел от живших на деревьях животных, похожих на современных обезьян. Доказательством этой теории служат некоторые черты строения наших тел, позволяющие, в частности, предположить, что когда-то наши предки были вегетарианцами и питались только плодами, кореньями и стеблями растений.

У основания вашего позвоночника есть костное образование — копчик. Это все, что осталось от хвоста. Большая часть волос, покрывающих ваше тело, представляет собой лишь мягкий пушок, но у наших предков волосяной покров был гораздо гуще. Каждый волосок снабжен специальным мускулом и встает дыбом, когда вы мерзнете. Так же и у всех млекопитающих с волосатой шкурой: она удерживает воздух, который не дает теплу животного уйти.

У многих взрослых людей есть широкие крайние зубы — их называют «зубы мудрости». Теперь в этих зубах нет никакой необходимости, но в свое время наши предки пережевывали ими жесткую растительную пищу, которой питались. Аппендикс представляет собой маленькую трубочку-отросток, связанную с кишечником. Наши отдаленные предки с его помощью переваривали растительную пищу, плохо усваиваемую организмом. Теперь он больше не нужен и постепенно становится все меньше и меньше. У многих травоядных животных — к примеру, кроликов — аппендикс развит очень хорошо.

Могут ли люди управлять эволюцией?

Люди управляют эволюцией некоторых животных вот уже более 10000 лет. Например, многие современные породы собак, по всей вероятности, произошли от волков, стаи которых бродили около стойбищ древних людей. Постепенно те из них, что стали жить вместе с людьми, эволюционировали в новый вид животных, то есть стали собаками. Затем люди начали специально выращивать собак для определенных целей. Это называется селекцией. В результате сегодня в мире насчитывается свыше 150 различных пород собак.

  • Собак, которых можно было обучить разным командам, вроде этой английской овчарки, выращивали для того, чтобы пасти скот.
  • Собак, которые умели быстро бегать, использовали для преследования дичи. У этой борзой мощные ноги, и она бежит огромными прыжками.
  • Собак с хорошим нюхом выводили специально для выслеживания дичи. Эта гладкошерстная такса может разрывать кроличьи норы.

Через естественный отбор, как правило, протекает очень медленно. Селективный отбор позволяет резко ускорить ее.

Что такое генная инженерия?

В 70-е гг. XX в. ученые изобрели способ изменения свойств живых организмов вмешательством в их генетический код. Эту технологию называют генной инженерией. Гены несут в себе своеобразный биологический шифр, содержащийся в каждой живой клетке. Он и определяет размеры и внешний вид каждого живого существа. С помощью генной инженерии можно выводить растения и животных, которые, скажем, быстрее растут или менее восприимчивы к какому-либо заболеванию

Жизнь на Земле появилась миллиарды лет назад, и с тех пор живые организмы становились всё сложнее и разнообразнее. Существует множество доказательств того, что всё живое на нашей планете имеет общее происхождение. Хотя механизм эволюции ещё не до конца понятен учёным, сам её факт не подлежит сомнению. В этом посте — о том, какой путь прошло развитие жизни на Земле от самых простейших форм до человека, какими были много миллионов лет назад наши далёкие предки. Итак, от кого же произошёл человек?

Земля возникла 4,6 миллиардов лет назад из газопылевого облака, окружавшего Солнце. В начальный период существования нашей планеты условия на ней были не очень комфортными — в окружающем космическом пространстве летало ещё много обломков, которые постоянно бомбардировали Землю. Считается, что 4,5 млрд лет назад Земля столкнулась с другой планетой, в результате этого столкновения образовалась Луна. Первоначально Луна была очень близко к Земле, но постепенно отдалялась. Из-за частых столкновений в это время поверхность Земли находилась в расплавленном состоянии, имела очень плотную атмосферу, а температура на поверхности превышала 200°C. Через некоторое время поверхность затвердела, образовалась земная кора, появились первые материки и океаны. Возраст самых древних исследованных горных пород составляет 4 миллиарда лет.

1) Древнейший предок. Археи.

Жизнь на Земле появилась, согласно современным представлениям, 3,8-4,1 млрд лет назад (самому раннему из найденных следов бактерий 3,5 млрд лет). Как именно возникла жизнь на Земле, до сих пор надёжно не установлено. Но вероятно, уже 3,5 млрд. лет назад, существовал одноклеточный организм, который имел все черты, присущие всем современным живым организмам и был для всех них общим предком. От этого организма всем его потомкам достались черты строения (все они состоят из клеток, окружённых оболочкой), способ хранения генетического кода (в закрученных двойной спиралью молекулах ДНК), способ хранения энергии (в молекулах АТФ) и т. д. От этого общего предка произошли три основные группы одноклеточных организмов, существующих до сих пор. Сначала разделились между собой бактерии и археи, а затем от архей произошли эукариоты — организмы, клетки которых имеют ядро.

Археи почти не изменились за миллиарды лет эволюции, вероятно примерно так же выглядели и древнейшие предки человека

Хотя археи дали начало эволюции, многие из них дожили до наших дней почти в неизменном виде. И это не удивительно — с древних времён археи сохранили способность выживать в самых экстремальных условиях — при отсутствии кислорода и солнечного света, в агрессивных — кислых, солёных и щелочных средах, при высоких (некоторые виды прекрасно чувствуют себя даже в кипятке) и низких температурах, при высоких давлениях, также они способны питаться самыми разными органическими и неорганическими веществами. Их далёкие высокоорганизованные потомки совсем не могут этим похвастаться.

2) Эукариоты. Жгутиковые.

Длительное время экстремальные условия на планете мешали развитию сложных форм жизни, и на ней безраздельно господствовали бактерии и археи. Примерно 3 млрд. лет назад на Земле появляются цианобактерии. Они начинают использовать процесс фотосинтеза для поглощения углерода из атмосферы, выделяя при этом кислород. Выделяющийся кислород сначала расходуется на окисление горных пород и железа в океане, а затем начинает накапливаться в атмосфере. 2,4 млрд. лет назад происходит «кислородная катастрофа» — резкое повышение содержание кислорода в атмосфере Земли. Это приводит к большим изменениям. Для многих организмов кислород оказывается вреден, и они вымирают, заменяясь такими, которые наоборот, используют кислород для дыхания. Меняется состав атмосферы и климат, становится значительно холоднее из-за падения содержания парниковых газов, но появляется озоновый слой, защищающий Землю от вредного ультрафиолетового излучения.

Примерно 1,7 млрд лет назад от архей произошли эукариоты — одноклеточные организмы, клетки которых имели более сложное строение. Их клетки, в частности, содержали ядро. Впрочем, возникшие эукариоты имели не одного предшественника. Например, митохондрии, важные составляющие клеток всех сложных живых организмов, произошли от свободноживущих бактерий, захваченных древними эукариотами.

Существует много разновидностей одноклеточных эукариот. Считается, что все животные, а значит и человек, произошли от одноклеточных организмов, которые научились передвигаться при помощи жгутика, расположенного сзади клетки. Жгутики также помогают фильтровать воду в поисках пищи.

Хоанофлагеллаты под микроскопом, как полагают учёные, именно от подобных существ некогда произошли все животные

Некоторые виды жгутиковых живут, объединяясь в колонии, считается, что из таких колоний простейших жгутиковых некогда произошли первые многоклеточные животные.

3) Развитие многоклеточных. Билатерии.

Примерно 1,2 млрд. лет назад появляются первые многоклеточные организмы. Но эволюция всё ещё медленно продвигается, вдобавок развитию жизни мешают . Так, 850 млн. лет назад начинается глобальное оледенение. Планета более чем на 200 млн. лет покрывается льдом и снегом.

Точные детали эволюции многоклеточных, к сожалению, неизвестны. Но известно, что через некоторое время первые многоклеточные животные разделились на группы. Дожившие до наших дней без особых изменений губки и пластинчатые не имеют отдельных органов и тканей и отфильтровывают питательные вещества из воды. Ненамного сложнее устроены кишечнополостные, имеющие лишь одну полость и примитивную нервную систему. Все же остальные более развитые животные, от червей до млекопитающих, относятся к группе билатерий, и их отличительным признаком является двусторонняя симметрия тела. Когда появились первые билатерии, доподлинно неизвестно, вероятно это произошло вскоре после окончания глобального оледенения. Формирование двусторонней симметрии и появление первых групп билатеральных животных, вероятно, происходило между 620 и 545 млн. лет назад. Находки ископаемых отпечатков первых билатерий относятся ко времени 558 млн. лет назад.

Кимберелла (отпечаток, внешний вид) — один из первых обнаруженных видов билатерий

Вскоре после своего возникновения билатерии разделяются на первичноротых и вторичноротых. От первичноротых происходят почти все беспозвоночные животные — черви, моллюски, членистоногие и т. д. Эволюция вторичноротых приводит к появлению иглокожих (таких, как морские ежи и звёзды), полухордовых и хордовых (к которым относится и человек).

Недавно в Китае были найдены остатки существ, получивших название Saccorhytus coronarius. Они жили примерно 540 млн. лет назад. По всем признакам это маленькое (размером всего около 1 мм) существо было предком всех вторичноротых животных, а значит, и человека.

Saccorhytus coronarius

4) Появление хордовых. Первые рыбы.

540 млн. лет назад происходит «кембрийский взрыв» — за очень короткий период времени появляется огромное число самых разных видов морских животных. Фауну этого периода удалось хорошо изучить благодаря сланцам Бёрджес в Канаде, где сохранились остатки огромного числа организмов этого периода.

Некоторые из животных кембрийского периода, останки которых найдены в сланцах Бёрджес

В сланцах нашли множество удивительных животных, к сожалению, давно вымерших. Но одной из наиболее интересных находок стало обнаружение останков небольшого животного, получившего название пикайя. Это животное — самый ранний из найденных представителей типа хордовых.

Пикайя (останки, рисунок)

У пикайи были жабры, простейший кишечник и кровеносная система, а также небольшие шупальца возле рта. Это небольшое, размером около 4 см. животное напоминает современных ланцетников.

Появление рыб не заставило себя долго ждать. Первым из найденных животных, которое можно отнести к рыбам, считается хайкоуихтис. Он был ещё меньше пикайи (всего 2,5 см), но у него уже были глаза и головной мозг.

Примерно так выглядел хайкоуихтис

Пикайя и хайкоуихтис появились между 540 и 530 млн. лет назад.

Вслед за ними в морях вскоре появилось множество рыб большего размера.

Первые ископаемые рыбы

5) Эволюция рыб. Панцирные и первые костные рыбы.

Эволюция рыб продолжалась довольно долго, и поначалу они совсем не были доминирующей группой живых существ в морях, как сегодня. Напротив, им приходилось спасаться от таких крупных хищников, как ракоскорпионы. Появились рыбы, у которых голова и часть туловища были защищены панцирем (считается, что череп впоследствии развился из такого панциря).

Первые рыбы были бесчелюстными, вероятно, они питались мелкими организмами и органическими остатками, втягивая и фильтруя воду. Лишь около 430 млн. лет назад появились первые рыбы, имеющие челюсти — плакодермы, или панцирные рыбы. Голова и часть туловища у них была прикрыта костным панцирем, обтянутым кожей.

Древняя панцирная рыба

Некоторые из панцирных рыб приобрели большие размеры и стали вести хищный образ жизни, но дальнейший шаг в эволюции был сделан благодаря появлению костных рыб. Предположительно, от панцирных рыб произошёл общий предок хрящевых и костных рыб, населяющих современные моря, а сами панцирные рыбы, появившиеся примерно в одно с ними время акантоды, а также почти все бесчелюстные рыбы впоследствии вымерли.

Entelognathus primordialis — вероятная промежуточная форма между панцирными и костными рыбами, жил 419 млн. лет назад

Самой первой из обнаруженных костных рыб, а значит, и предком всех сухопутных позвоночных, включая человека, считается живший 415 млн. лет назад Guiyu Oneiros. По сравнению с хищными панцирными рыбами, достигавшими в длину 10 м, эта рыба была небольшой — всего 33 см.

Guiyu Oneiros

6) Рыбы выходят на сушу.

Пока рыбы продолжали эволюционировать в море, растения и животные других классов уже выбрались на сушу (следы присутствия на ней лишайников и членистоногих обнаруживаются ещё 480 млн. лет назад). Но в конце концов освоением суши занялись и рыбы. От первых костных рыб произошли два класса — лучепёрые и лопастопёрые. К лучепёрым относится большинство современных рыб, и они прекрасно приспособлены для жизни в воде. Лопастепёрые, напротив, приспособились к жизни на мелководье и в небольших пресных водоёмах, в результате чего их плавники удлинились, а плавательный пузырь постепенно превратился в примитивные лёгкие. В результате эти рыбы научились дышать воздухом и ползать по суше.

Эвстеноптерон () — одна из ископаемых кистепёрых рыб, которая считается предком сухопутных позвоночных. Эти рыбы жили 385 млн. лет назад и достигали длины 1,8 м.

Eusthenopteron (реконструкция)

— ещё одна кистепёрая рыба, которая считается вероятной промежуточной формой эволюции рыб в земноводных. Она уже могла дышать лёгкими и выползать на сушу.

Panderichthys (реконструкция)

Тиктаалик, найденные останки которого относятся ко времени 375 млн. лет назад, был ещё ближе к земноводным. У него были рёбра и лёгкие, он мог вертеть головой отдельно от туловища.

Тиктаалик (реконструкция)

Одними из первых животных, которых причисляют уже не к рыбам, а к земноводным, стали ихтиостеги. Они жили около 365 млн. лет назад. Эти небольшие животные длиной около метра, хотя уже и имели лапы вместо плавников, всё ещё с трудом могли передвигаться по суше и вели полуводный образ жизни.

Ихтиостега (реконструкция)

На время выхода позвоночных на сушу пришлось очередное массовое вымирание — девонское. Оно началось примерно 374 млн. лет назад, и привело к вымиранию почти всех бесчелюстных рыб, панцирных рыб, многих кораллов и других групп живых организмов. Тем не менее первые земноводные выжили, хотя им и понадобился ещё не один миллион лет, чтобы более-менее адаптироваться к жизни на суше.

7) Первые рептилии. Синапсиды.

Начавшийся примерно 360 млн. лет назад и продолжавшийся 60 млн. лет каменноугольный период был очень благоприятен для земноводных. Значительную часть суши покрывали болота, климат был тёплым и влажным. В таких условиях многие земноводные продолжали жить в воде или около неё. Но примерно 340-330 млн. лет назад некоторые из земноводных решили освоить и более сухие места. У них развились более сильные конечности, появились более развитые лёгкие, кожа, наоборот стала сухой, чтобы не терять влагу. Но чтобы действительно длительное время жить далеко от воды, нужно было ещё одно важное изменение, ведь земноводные, как и рыбы, метали икру, и их потомство должно было развиваться в водной среде. И около 330 млн. лет назад появились первые амниоты, т. е. животные, способные откладывать яйца. Оболочка первых яиц была ещё мягкой, а не твёрдой, тем не менее, их уже можно было откладывать на суше, а значит, потомство уже могло появляться вне водоёма, минуя стадию головастиков.

Учёные до сих пор путаются в классификации земноводных каменноугольного периода, а также в том, считать ли некоторые ископаемые виды уже ранними рептилиями, либо всё ещё земноводными, приобретшими лишь некоторые черты рептилий. Так или иначе, эти то ли первые рептилии, то ли рептилоподобные земноводные выглядели примерно так:

Вестлотиана — небольшое животное длиной около 20 см., сочетавшее черты рептилий и земноводных. Жило примерно 338 млн. лет назад.

А затем ранние рептилии разделились, дав начало трём большим группам животных. Палеонтологи выделяют эти группы по строению черепа — по числу отверстий, через которые могут проходить мышцы. На рисунке сверху вниз черепа анапсида , синапсида и диапсида :

При этом анапсидов и диапсидов часто объединяют в группу завропсидов . Казалось бы, отличие совершенно незначительное, тем не менее, дальнейшая эволюция этих групп пошла совершенно разными путями.

От завропсидов произошли более продвинутые рептилии, включая динозавров, а затем птицы. Синапсиды же дали начало ветви звероподобных ящеров, а затем и млекопитающим.

300 млн. лет назад начался Пермский период. Климат стал более сухим и холодным и на суше стали доминировать ранние синапсиды — пеликозавры . Одним из пеликозавров был Диметродон, имевший в длину до 4х метров. На спине у него был большой «парус», который помогал регулировать температуру тела: быстро охладиться при перегреве или, наоборот, быстро согреться, подставив спину солнцу.

Считается, что огромный диметродон является предком всех млекопитающих, а значит, и человека.

8) Цинодонты. Первые млекопитающие.

В середине Пермского периода от пеликозавров происходят терапсиды, больше уже похожие на зверей, чем на ящеров. Выглядели терапсиды примерно так:

Типичный терапсид Пермского периода

В течение Пермского периода возникло много видов терапсид, больших и маленьких. Но 250 млн. лет назад происходит мощный катаклизм. Из-за резкого усиления вулканической активности температура повышается, климат становится очень сухим и жарким, большие площади суши заливает лава, а атмосферу наполняют вредные вулканические газы. Происходит Великое Пермское вымирание, самое масштабное в истории Земли массовое вымирание видов, вымирают до 95% морских и около 70% сухопутных видов. Из всех терапсид выживает лишь одна группа — цинодонты .

Цинодонты были животными преимущественно небольшого размера, от нескольких сантиметров до 1-2 метров. Среди них были как хищники, так и травоядные.

Циногнат — вид хищных цинодонтов, живших около 240 млн. лет назад. Был в длину около 1.2 метра, один из возможных предков млекопитающих.

Однако, после того, как климат наладился, цинодонтам было не суждено захватить планету. Диапсиды перехватили инициативу — от мелких рептилий произошли динозавры, которые вскоре заняли большинство экологических ниш. Цинодонты не могли с ними тягаться, они измельчали, им пришлось прятаться в норах и выжидать. Реванш удалось взять нескоро.

Однако цинодонты выживали, как могли, и продолжали эволюционировать, всё больше становясь похожими на млекопитающих:

Эволюция цинодонтов

Наконец, от цинодонтов произошли первые млекопитающие. Они были маленькими и вели, предположительно, ночной образ жизни. Опасное существование среди большого количества хищников способствовало сильному развитию всех органов чувств.

Одним из первых настоящих млекопитающих считается Мегазостродон.

Мегазостродон жил примерно 200 млн. лет назад. Его длина была всего около 10 см. Мегазостродон питался насекомыми, червями и другими мелкими животными. Вероятно, он или другой похожий зверёк и был предком всех современных млекопитающих.

Дальнейшую эволюцию — от первых млекопитающих до человека — мы рассмотрим в .

Идея образования и расплавления земной коры и движения континентальных плит, сопровождающего эти процессы, поражает воображение как огромными размерами и весом движущихся глыб, так и колоссальной энергией, которая необходима для поддержания всей этой системы в движении. Однако не менее поразителен процесс эволюции живых организмов, проходящий через всю историю планеты Земля; он вызывает изумление огромным количеством участвующих в нем организмов и крайней сложностью биохимических процессов, в совокупности образующих Жизнь. В течение всей исгории Земли отдельные растения и животные, умирая, захоронялись под отложениями, а их форма и строение "консервировались" в виде ископаемых остатков, включенных в пласты пород. В наши дни многие ископаемые были найдены и собраны воедино. Если расположить их по порядку, то видно, что они образуют непрерывные ряды. Некоторые изменения, прослеживающиеся в поколениях современных организмов, представляют собой непосредственное продолжение цепи изменений, установленных по ископаемым остаткам. Все вместе эти ряды образуют сложную цепь со многими звеньями, которая постоянно удлиняется уже более 3 миллиардов лет, с тех самых пор, как химическая эволюция была замещена самовоспроизводством организмов. Теория этой цепи, теория эволюции живых организмов, позволяет понять историю жизни, ранее представлявшуюся беспорядочным скоплением ископаемых форм. А кроме того, как мы уже отметили в главе третьей, эта теория сделала возможной корреляцию слоев в различных районах и таким образом способствовала построению геохронологической шкалы.

Когда мы делаем попытку обрисовать историю организмов, мы закономерно начинаем с рассмотрения процесса эволюции, который восстанавливаем по ископаемым остаткам. Мы начнем с данных, на которых основано наше понимание этого процесса, а затем перейдем к рассмотрению того, как работает его механизм.

Доказательства эволюции

За последние сто лет среди ученых стало господствующим убеждение, что эволюция действовала всегда и действует и в настоящее время. Это убеждение основано на огромном количестве фактов, в том числе на данных различных отраслей науки. В частности, оно основано на анализе соотношения различных ископаемых и соотношения между зародышами различных животных, анатомических данных, опыте целенаправленного разведения растений и животных.

Ископаемые . Пожалуй, наиболее убедительным обоснованием теории эволюции являются собранные воедино сведения об ископаемых остатках. При сравнении ископаемых, собранных из различных пластов, становится очевидно, что чем моложе породы, тем более сложные организмы в них обнаруживаются; усложнение происходит в направлении от основания к вершине геохронологической колонки. Это подтверждается на примере слоев, выходящих в Большом каньоне Колорадо. Как мы отмечали в седьмой главе, наиболее древние ископаемые остатки принадлежат одноклеточным организмам, следующие по возрасту - растения, а затем - наиболее простые животные. Это прогрессирующее усложнение прослеживается к вышележащим (то есть более молодым) слоям, и наконец, последним в позднекайнозойских слоях появляется человек. Едва ли будет ошибкой считать это соотношение доказательством того, что со времени начала эволюционного процесса биологическая эволюция непрерывно создавала новые формы и структуры.

Если сравнивать различные ископаемые остатки не с их "родными" слоями, а между собой и с другими организмами, которые живут сейчас, выявляется другая удивительная закономерность. Если объединить между собой наиболее близкие группы, то графически соотношение между ними может быть представлено в виде дерева, со стволом, большими и малыми ветвями, причем существующие сейчас виды помещаются на вершинах ветвей (рис. 30). Если проследить распределение этих организмов по ветвям, сверху вниз, изменения кажутся незаметными, но общий эффект при переходе от малых ветвей к большим может оказаться весьма значительным. При переходе от малых ветвей, к большим ископаемые организмы становятся все более простыми, причем самые простые располагаются у основания ствола. Так или иначе, но все эти жизненные формы связаны друг с другом, как имена предков в родословном древе. Даже крошечные простейшие являются предками человека, как мы можем установить, проследив эту линию достаточно далеко вниз.

Рис. 30. "Древо жизни", показывающее соотношение между различными формами жизни, как современными, так и ископаемыми. Приведенная схема далеко не полная; в нее включены только наиболее известные группы животных и не дано подразделений растительного мира

Конечно, "древо жизни" до сих пор еще не "укомплектовано", и хотя это и не показано на рисунке 30, но в некоторых случаях связи между отдельными ветвями еще не прослежены. Пробелы в ряду ископаемых остатков представляют собой недостающие звенья в цепи наших данных. Но постепенно одно за другим недостающие звенья находятся и занимают свое место. Таким звеном явилась, например, одна из древнейших и наиболее примитивных ископаемых амфибий - Ichthyost$ga, найденная в девонских слоях в Гренландии в 1948 г. Она настолько похожа на девонских рыб, что только конечности указывают на принадлежность ее к наземным животным (рис. 31). Это указывает на связь между рыбами и амфибиями.

Другое некогда недостающее звено - археоптерикс (Archeopterух), самая примитивная из известных нам птиц, впервые обнаруженная в юрских пластах в Германии в 1861 г. Эта "покрытая перьями рептилия" представляет собой промежуточное звено между рептилиями и птицами и отнесена к птицам потому, что она покрыта перьями. Наконец, древнейший человек - австралопитек (Australopithecus, africanus) (фото 64), обнаруженный в Южной Африке в 1924 г., значительно более примитивный, чем известные нам до сих пор по ископаемым остаткам древние люди. Он образовал новое звено в цепи примитивных предков человека.

Некоторые ветви эволюционной цепи оказались гораздо длиннее, чем это предполагалось раньше. Например, в 1938 г. рыбаки в Индийском океане поймали очень большую странного облика рыбу, целаканта (фото 10). Эта примитивная рыба со своеобразными лопастевидными плавниками была хорошо известна в ископаемом состоянии и встречалась в пластах начиная от девонского и до мелового возраста, однако считалась вымершей еще до начала кайнозоя. Открытие живого целаканта продлило историю существования этого вида еще на 70 миллионов лет. Эти рыбы - близкие родственники девонских рыб с лопастевидными плавниками, из которых развились амфибии, как мы уже отмечали выше, - также образуют звено в цепи предков человека.


Фото 10. Целакант, "живое ископаемое". Экземпляр, пойманный в марте 1966 г

Другим "живым ископаемым" является разновидность секвойи, Metasequoia (фото 11), которая до 1941 г. считалась исчезнувшей в среднекайнозойское время. В 1941 г., однако, она была открыта в одном из внутренних районов Китая. Сейчас эти деревья, родственные хорошо знакомой нам секвойе, выращиваются из привезенных из Китая семян и в других странах.

Сходство зародышей . Другие доказательства эволюции были получены при изучении зародышей. Развивающиеся зародыши различных видов позвоночных обнаруживают поразительное сходство между собой на ранних стадиях своего развития, но по мере Дальнейшего развития утрачивают это сходство. Чем ближе родство между видами животных (как, например, между человеком и обезьяной), тем дольше сохраняется сходство между их развивающимися зародышами.

Особо следует отметить наличие одинаковых жаберных щелей, которые видны на ранних стадиях развития у различных видов животных. Эти щели, однако, изменяются у различных животных по мере развития. У рыб жаберные щели и связанные с ними органы образуют приспособление для дыхания жабрами. Но птицам и млекопитающим, которые дышат иначе, жаберные щели не нужны для дыхания. Они преобразовались в органы, с помощью которых животные издают или слышат звуки. У человека, например, из эмбриональных жаберных щелей развилась часть уха и горла. Это является достаточно веским доказательством того, что человек и другие дышащие воздухом позвоночные сохранили эмбриональные черты, унаследованные от далеких предков, которые дышали жабрами и жили по крайней мере 360 миллионов лет назад.

Сходство скелетов . Если сравнивать скелеты древних и современных наземных позвоночных (рис. 31), они свидетельствуют приблизительно о том же, о чем и зародыши. Скелеты состоят из сходного количества костей, располагающихся приблизительно в одном и том же порядке. Только размеры отдельных костей и их относительные пропорции меняются у различных животных. Это сходство, столь устойчиво прослеживающееся, может означать только одно: скелет современных наземных позвоночных в основе своей представляет очень старомодную конструкцию. Хотя с течением времени его отдельные части удлинялись или укорачивались, увеличивались или уменьшались, но в целом он никогда не был заменен чем-то совершенно новым. Он только постоянно, и то очень медленно, преобразовывался путем многочисленных, но очень небольших изменений. Таково еще одно неопровержимое доказательство того, что современные высшие животные развились из своих отдаленных предков, многое от них унаследовав.

Еще более ясно это можно увидеть, если мы подробно рассмотрим какие-либо части скелета, например переднюю конечность (рис. 32). У всех позвоночных передняя конечность имеет одинаковое в основном строение, но у каждого вида она изменилась таким образом, чтобы обеспечить наибольшее удобство при передвижении в данных условиях среды обитания - в воздухе (птицы), в море (киты), на обширных травянистых равнинах (лошади) и в лесу (кошки). Таким образом, как мы вскоре увидим, среда оставляет свой отпечаток на скелетах.

Рудиментарные органы . Как кости, так и мягкие части тел многих животных организмов образуют органы, которые не несут очевидных функций, но сходны с органами других живущих или вымерших организмов, у которых эти органы выполняли вполне определенные функции. У тех животных, у которых эти органы бесполезны, они носят название рудиментарных, потому что являются остатками - рудиментами - приспособлений, существовавших у предков. Только в теле человека таких органов более 150; наиболее известен из них аппендикс, слепой отросток, который может воспаляться и во многих случаях подлежит хирургическому удалению. У некоторых менее развитых животных, однако, соответствующий орган функционирует как полезная часть пищеварительного тракта. Менее известным органом является копчик. Он состоит из семи позвонков с соответствующими мускулами и нервами и расположен у основания позвоночника. Это рудиментарное образование, которое в более развитом виде образует хвост у большинства животных. Малые берцовые кости, у современных лошадей не выполняющие никаких функций, представляют собой остатки когда-то использовавшихся пальцев у предков лошади, имевших три опорных пальца. Киты и некоторые змеи имеют рудиментарные кости, которые соответствуют костям задних конечностей у четвероногих животных. Некоторые нелетающие птицы, например страус, имеют рудиментарные крылья - остатки крыльев, которые другие птицы используют для полета. Таковы немногие примеры, выбранные нами из огромного множества рудиментарных органов, существование которых может быть объяснено только тем фактом, что они стали рудиментарными в ходе эволюции.

Одомашнивание животных и растений . В результате направленного разведения в течение длительного времени - от нескольких лет до нескольких тысяч лет - человеку удалось вывести многочисленные разновидности отдельных видов растений и животных. Наиболее известный пример - многочисленные породы собак, очевидно, выведенные от одного первоначального вида, напоминавшего волка. Породы собак очень разнообразны по размерам, форме тела и соответствию специальным целям, хотя все они принадлежат к одному виду. Эти искусственно полученные изменения показывают возможность передачи по наследству признаков, отобранных человеком, и позволяют предполагать, что подобный процесс изменений имел место и в течение длительной истории организмов.

Процесс эволюции

После обзора наиболее убедительных доказательств происходившей эволюции, мы можем обратиться к рассмотрению самого процесса, в котором выделяются три аспекта. Первый - молекулы, которые могут копировать сами себя и передавать в закодированном виде информацию. Второй - изменения, которые происходят с отдельными организмами и могут быть унаследованы. Третий - среда и ее влияние на состав популяций. Если внимательно рассмотреть эти три аспекта, то нетрудно будет понять, как именно происходила и происходит эволюция, зафиксированная по ископаемым остаткам.

Молекулы ДНК . В любом организме каждая отдельная клетка, имеющая ядро, содержит некоторое количество очень важного вещества, называемого дезоксирибонуклеиновой кислотой (сокращенно ДНК). Молекула ДНК имеет необычные для единичной молекулы большие размеры, и все же, чтобы сделать с нее фотографию обычного размера, она должна быть увеличена в сотни тысяч раз. Фотография, сделанная с помощью электронного микроскопа, показывает, что она имеет форму двух переплетенных спиралей (фото 12). Большая спиральная молекула ДНК обладает замечательной способностью к самовоспроизводству. Она может делиться на две совершенно равные половины, каждая из которых содержит половину спирали. Затем каждая половина может достраивать недостающую часть, снова приобретая вид спирали. Результатом является удвоение - две полных спирали вместо одной, существовавшей ранее. Считается, что это удвоение возможно потому, что каждая часть исходной спирали состоит из четырех химических компонентов, которые могут располагаться в различном порядке. Подобно точкам и тире азбуки Морзе, долгое время использовавшейся при передаче телеграмм, порядок, в котором расположены химические компоненты, составляет генетический код, который содержит информацию или "инструкции", согласно которым должна строиться вторая половина спирали. Закодированное таким образом послание представляет собой своего рода чертеж. Оно определяет, какие химические элементы должны использоваться, а также в каком порядке они должны располагаться. Порядок образует химические соединения, которые нужны клетке или группе клеток для того, чтобы развиваться и функционировать. Конечно, эти химические компоненты, служащие для построения клеток, получаются из пищи, поглощенной и переработанной организмом, причем количество пищи должно быть достаточно велико.

Именно так отдельный организм (набор специализированных клеток) растет в продолжение всей своей жизни путем деления и перестройки клеток, согласно закодированным инструкциям, содержащимся в молекулах самих клеток. По мере того как клетки делятся, инструкция тоже воспроизводится, так что любая клетка, имеющая ядро, получает свою собственную копию и может немедленно ее использовать. Таким образом определяется не только рост, но и каждая черта индивидуального организма. Если трудно представить себе такую большую детальность, следует вспомнить, что молекула ДНК, какой бы большой она ни была, все же очень мала с точки зрения человека. Диаметр ее составляет около 0,0000008 сантиметра, и в теле человека может находиться почти неисчислимое количество таких молекул. Сложность процессов, которые одновременно происходят в таком большом городе, как, например, Нью-Йорк с его восьмимиллионным населением, не очень велика по сравнению со сложностью процессов образования, движения и разрушения молекул ДНК и других составных частей в теле одного обитателя этого города.

Резюмируя, можно сказать, что молекулы ДНК с записанной в них информацией и способностью воспроизводить самих себя определяют основной план роста и функционирования клеток, составляющих организм, и, следовательно, все основные черты и особенности организма. Мы должны посмотреть, каким образом передается закодированная информация, а следовательно, и особенности организма, от одного поколения к другому, так как эта информация лежит в основе наследственности.

Наследственность и изменчивость . Характеристики формы и поведения, определенные генетическим кодом, передаются от родителей к потомству, но в этом процессе они меняются, по крайней мере до некоторой степени благодаря строению клеток, участвующих в процессе полового размножения. В отдельной особи любого вида организмов, размножающихся половым путем (а сюда относятся почти все животные и растения), половые клетки содержат длинные нитевидные хромосомы, каждая из которых в свою очередь содержит многочисленные гены, - единицы, контролирующие наследственность. Ген - это часть молекулы ДНК, та часть, которая содержит в своем строении запись информации, необходимой для воспроизводства данного организма - его формы, размера, физиологии и поведения.

И вот когда мужская клетка спермы объединяется с женской яйцеклеткой, образуется новая сложная клетка, имеющая комбинацию хромосом обоих родителей. Оплодотворенная клетка начинает делиться. При этом делении точно воспроизводится новая комбинация хромосом. Код, которым обладает эта сложная клетка, конечно, отличается от кода любого из родителей. В соответствии с этим и новая особь может обладать чертами родителей почти в любом сочетании. Количество сочетаний, которые могут образовывать хромосомы в одном человеческом организме, оценивается в 2 100°. Это почти невероятно большое число. Поскольку потенциальное число комбинаций настолько велико, две особи не могут быть в точности одинаковыми. Каждая из них получает гены от обоих родителей, и эти гены образуют уникальную комбинацию. Эта комбинация содержит неповторимый набор закодированных сведений и инструкций, согласно которым развиваются индивидуальные черты организма, до некоторой степени передающиеся по наследству следующим поколениям.

Существенным результатом этого является изменчивость. Поскольку каждый индивид в каждом поколении до некоторой степени отличается от своих родителей, изменчивость постоянно проявляется в виде многочисленных мелких, незаметных изменений, которые могут быть унаследованы.

Естественный отбор . На этой стадии сказывается влияние окружающей среды. Каждый организм в каждом поколении рождается со своим собственным комплексом изменений в определенных условиях среды. Этот организм реагирует на условия, приспосабливаясь к ним, но степень этого приспособления частично будет зависеть от унаследованных изменений. Некоторые особи из большой популяции будут в большей степени соответствовать условиям среды, чем другие, просто потому, что один или несколько свойственных им признаков дали им небольшое преимущество в этом окружении. Поэтому статистически у одной группы особей будет чуть больше шансов выжить и воспроизвести себя, чем у остальных. Поскольку изменения могут наследоваться, следующее поколение будет иметь немного большее количество особей, обладающих благоприятными изменениями. Если условия останутся неизменными, то приобретение всей популяцией "благоприятных" свойств явится только вопросом времени, хотя, возможно, довольно длительного.

Это настолько важный вопрос и так часто его понимают неправильно, что мы вернемся к нему еще раз. В любой популяции изменения проявляются в каждом поколении. Из этих постоянно возникающих наборов изменений условия среды стремятся отбирать лучшие (то есть наиболее соответствующие условиям). В результате этого создается впечатление, что отдельные особи в популяции сознательно пытаются приспособиться. Однако ничто не может быть дальше от истины. Этот процесс приспособления есть не что иное, как ряд приспособительных реакций. Эволюция не имеет программы, но точность, с которой приспосабливающиеся организмы отвечают на требования среды, похожа на чудо.

Простой, но вместе с тем ясный пример этого процесса представляет история эволюции бабочек в Англии за последнее время. Если сопоставить данные наблюдений и подсчетов, сделанных в настоящее время, с теми, которые были сделаны в 1850 г., то окажется, что около 60 видов бабочек в Англии изменили свой облик. За этот период времени в результате развития промышленности здания и даже деревья покрылись копотью. В 1850 г. менее 10% популяции бабочек имели темную окраску, сейчас же темный цвет имеют более 90%. Первоначальное соотношение цветов было результатом изменчивости. Однако так как светлая окраска была более заметна на темном фоне, птицы легче находили и истребляли бабочек со светлой окраской и меньшее их количество выживало и размножалось. Для бабочек критическим фактором среды явилось наличие насекомоядных птиц. Бабочки не приспосабливались сами сознательно к более темной окраске среды; они оказались к ней приспособленными в результате деятельности птиц.

Выживание под влиянием среды и с помощью механизма наследственности определяет облик грядущих поколений и называется естественным отбором. Это процесс сортировки и перетасовки. Хотя естественный отбор действует в сфере организмов, он подобен по своим результатам отбору в неорганическом мире, сортировке и перемешиванию, которые производят другие природные процессы, создающие земную кору. Глубоко под поверхностью Земли определенные минералы "отбираются" благодаря относительно низкой точке их плавления, и их расплав движется вверх. На поверхности минералы "отбираются" в соответствии с их устойчивостью по отношению к процессам химического разрушения, их неустойчивые компоненты удаляются. Действительно, естественный отбор более понятен, если мы рассматриваем его как один из многих сложных природных процессов, протекающих на Земле.

В естественном отборе изменение от одного поколения к другому может быть незначительным, но, как и в случае врезания Большого каньона Колорадо или сортировки частиц, образующихся при выветривании гранита, кумулятивный эффект бывает огромным. Как мы отметили в предыдущих главах, на поверхности Земли непрерывно происходят геологические изменения, вызывающие изменения природных условий. Эти последние в свою очередь влияют на растения и животных, вызывая адаптацию.

Мы должны помнить, что такие изменения происходят не сознательно и не целенаправленно. Они действуют автоматически, слегка изменяя вероятность выживания каждой особи в популяции. Каждая особь, со своим набором присущих только ей свойств, сталкивается с требованиями среды. Некоторые особи выживают, другие оказываются истребленными, и каждое новое поколение становится немного лучше приспособленным к условиям среды, чем были приспособлены его родители.

Повсюду в мире мы наблюдаем растения и животных, которые в процессе приспособления приобрели строение и черты, наиболее соответствующие данному виду среды. Белый медведь, обладающий толстой шкурой с жировой подкладкой, прекрасно умеющий плавать, хорошо приспособлен к жизни на полярных льдах. Длинноногий верблюд, со своей способностью сохранять воду в организме, приспособлен к жизни в обширных районах континентов, отличающихся малым количеством воды и скудной растительностью. Другие организмы приспособились к жизни в тропических лесах, в воздухе над обширными океанами, в пещерных водоемах и ко многим другим условиям среды. Каждое из этих приспособлений явилось результатом эволюции, направлявшейся естественным отбором. Если мы внимательно изучим ископаемые, мы можем прийти к выводу, что в течение большей части истории организмы приспосабливались к тем же видам природной среды, которые существуют и сейчас. Но эти организмы меняли свое пространственное размещение вследствие геологических изменений, затрагивавших и поверхность континентов, и океаны. Такое приспособление организмов в прошлом явилось еще одним следствием принципа актуализма.

Мутации . Имеется и другой вид наследуемых изменений. Он увеличивает разнообразие живых организмов, среди которых под влиянием окружающих условий происходит отбор. Это мутации. Они происходят в яйцеклетке или сперматозоидах одной особи и могут наследоваться потомством. Мутации заключаются в изменении кодового механизма внутри молекулы ДНК, так что некоторый ген у особи нового поколения отличается от соответствующего гена у любого из родителей. Происходят они неожиданно и непредсказуемо и, будучи наследуемыми, вызывают изменения структуры, черт или характеристик, которые проявляются в последующих поколениях. Взаимодействуя со средой, эти изменения закрепляются в потомстве, если они благоприятны, или "выбраковываются", если они неблагоприятны. Химические основы мутаций в деталях еще не изучены, но можно полагать, что эти изменения имели существенное влияние на направление эволюционных изменений организмов.

Дискуссия

Эволюция в основе своей состоит в адаптации - приспособлении к окружающей среде. Изменения происходят постоянно - они имеют или характер мутаций или происходят в результате новых сочетаний свойств, возникающих в последующих поколениях. Они поставляют сырой материал, над которым работает естественный отбор. При этом испытываются всевозможные виды новых приспособлений, и те из них, которые оказались "успешными" в данных условиях, сохраняются и в будущем, неудачные же постепенно отсеиваются.

Когда Чарлз Дарвин впервые описал естественный отбор в 1859 г., он рассматривал этот процесс с точки зрения приспособленности организма для жизни в данной среде, конкуренции между отдельными особями, преуспевания некоторых групп и исчезновения менее приспособленных.

В рамках геологической истории успех групп организмов зависит от двух факторов: 1) способности эффективно воспроизводиться и 2) способности занимать территорию и удерживать ее в условиях конкуренции. В истории динозавров, цветковых растений или мамонтов ледникового периода все эти вопросы не имели никакого отношения к морали. Мораль - это человеческое понятие, и оно вступает в силу лишь на поздних.этапах истории человека.

Следует добавить, что изучение летописи ископаемых остатков не приводит нас к установлению какой-либо общей цели эволюции. Не доказано, что эволюция следовала в каком-либо определенном направлении и стремилась к определенной цели. Другими словами, эволюция, очевидно, не имеет программы. Очевидно, она не следует также и по прямой линии. Ее пути часто переплетаются (как мы видели на рис. 30) и отклоняются от прямого направления, но они никогда не повторяются в точности. Такой путь развития мы определяем как вероятностный, являющийся результатом непрерывного ряда ответных реакций живых организмов на новые возможности, возникающие при изменении среды.

Сколько времени потребовалось для того, чтобы процесс эволюции создал все то огромное разнообразие растений и животных - более миллиона видов, - которое существует сейчас? В начале этого процесса, как,мы отмечали в седьмой главе, постепенно возникли первые одноклеточные организмы. Это было более 3 миллиардов лет назад. Ближе к нашему времени органический мир достиг в основном своего современного состояния к концу плиоцена, возможно 2-3 миллиона лет назад. Большая часть эволюционных процессов протекла в интервале между этими двумя моментами. Никого, кто изучал этот процесс, не удивит то обстоятельство, что развитие организмов могло достичь современной степени приспособленности и разнообразия за отрезок времени немногим более 3 миллиардов лет. Ученые считают, что этого времени было вполне достаточно. Действительно, если бы геологические процессы, которые вызывали изменения среды обитания, протекали быстрее, то возможно, что та же степень эволюционного развития, которую мы видим сейчас, могла быть достигнута за более короткое время.

Скорость эволюционных изменений, конечно, менялась в широких пределах в зависимости от времени и места, была неодинаковой у различных видов организмов и зависела, как и сейчас, от скорости и пространственного распределения изменений окружающей среды. Например, набор ископаемых остатков показывает, что за 63 миллиона лет геологического времени, то есть за кайнозойскую эру, беспозвоночные морские организмы развивались медленно и изменились незначительно, а большинство наземных животных развивалось гораздо быстрее и при этом сильно изменялось. Эта разница отражает различия в скорости изменения среды. Природная обстановка на суше быстро реагировала на поднятия, горообразование и изменение температур и атмосферных осадков, в то время как природные условия в море оставались сравнительно стабильными. И все же с точки зрения человеческого календаря любая скорость эволюции кажется малой. За период, предположительно составляющий 10 000 лет, в течение которого собаки и скот были одомашнены и подверглись воздействию искусственного отбора, не образовалось ни одного нового вида. Искусственные изменения привели не более чем к появлению разновидностей в пределах одного вида.

Мы должны подчеркнуть этот основной принцип. Пока окружающие условия остаются стабильными, популяция организмов тоже остается стабильной, с небольшими эволюционными изменениями. Когда же среда начинает изменяться и, таким образом, становится неустойчивой, населяющие ее организмы также становятся нестабильными. Таким образом, окружающая среда создает предпосылки для проверки биологических "изобретений", которые постоянно появляются. Когда мы проследим историю живых организмов, восстановленную по ископаемым остаткам, мы увидим много примеров таких "изобретений"; некоторые из них оказались успешными, а другие, не выдержав испытаний, исчезли с лица Земли.

Тесная связь организмов со средой, их восприимчивость к изменениям среды, которая ясно прослеживается по ископаемым остаткам, найденным в древних пластах, должна послужить уроком современному человеку. На территориях, где в сильной степени развита промышленность, подчас происходят резкие изменения условий жизни. Некоторые из этих изменений более заметны и невыгодны для организмов (по крайней мере некоторых), чем изменения, обусловленные климатическими колебаниями или другими природными процессами. Изменения обоих видов, как можно ожидать, вызывают соответствующие ответные реакции (приспособление или постепенное вымирание) в биосфере этих территорий. Возможные последствия этого не следует недооценивать человеку - единственному виду, который вызывает изменения и может их контролировать с учетом конечных результатов - благоприятных или катастрофических для животных и растений Земли.

Литература

Blum H. F., 1951. Time"s arrow and evolution: Princeton University Press.

De Вeer G. R., 1964. Atlas of evolution: Thomas Nelson 8c Sons Ltd., Lodnon.

Dobzhansky Theodosius. 1950. The genetic basis of evolution: "Scientific American", January 1950, p. 2-11.

Mood у Р. A., 1962, Introduction to evolution: 3d ed., Harper 8c Row, Inc., New York.

Smith H. W.. 1961, From fish to philosopher: The Natural History Library. Anchor Books. Doubleday 8cCo., Garden City, New York. (Paperback.)

Stebbins G. L.. 1966, Processes of organic evolution: Prentice-Hall, Englewood Cliffs. N. J.

Volpe E. P., 1967. Understanding evolution: W. C. Brown Co., Dubuque. la. (Paperback.).

Yanofsky Charles. 1967, Gene structure and protein structure: "Scientific American", v. 216, p. 80-94.

Естественное явление изменения популяций, видов, высших таксонов, биоценозов, флора и фауна, генов и признаков во времени в ходе истории Земли.

Научные теории эволюции объясняют, как происходит эволюция, которые ее механизмы.

Общая характеристика

Строго говоря, биологическая эволюция — процесс изменения с течением времени в наследственных характеристиках, или поведении популяции живых организмов. Наследственные вехи есть закодированные в генетическом материале организма (обычно ДНК). Эволюция согласно синтетической теории эволюции, прежде всего, является следствием трех процессов: случайных мутаций генетического материала, случайного генетического отклонения (англ. Genetic drift) и не случайного естественного отбора в пределах групп и видов.

Естественный отбор, один из процессов, который управляет эволюцией, является результатом различий в шансах на воспроизведение между особями популяции. Это обязательно следует из следующих фактов:

  • Естественная, наследственная вариация существует в пределах групп и среди видов
  • Организмы надродючи (количество потомков превышает предел гарантированного выживания)
  • Организмы в отличные по способности выжить и возродиться
  • В любом поколении, те, что воспроизводятся успешно обязательно передают свои наследственные цихи к следующему поколению, когда же неудачные воспроизводители этого не делают.

Если свойства увеличивают эволюционную пригодность индивидуумов, которые несут их, то те индивидуумы вероятнее выживают и воспроизводятся, чем другие организмы популяции. Так они передают больше копий удачных наследственных черт к следующему поколению. Соответствующее уменьшение пригодности из-за вредных цихи приводит к их зридшення. Со временем, это может приводить к приспособлению: постепенное накопление новых этих (и сохранение существующих, которые в целом приспосабливают популяцию живых организмов к их окружения и экологической ниши.

Хотя естественный отбор не случаен по своей форме действия, другие капризны силы имеют сильное влияние на процесс эволюции. В поло воспроизводимых организмах, случайное генетическое отклонение приводит к наследственным этих, которые становятся достаточно общими просто благодаря стечению обстоятельств и случайном спариванию. Этот бесцельный процесс может быть влиятельными от естественного отбора в определенных ситуациях (особенно в маленьких группах).

В разных окружениях, естественный отбор, случайные генетические отклонения и крошка случайности в мутациях, которые появляются и хранятся, могут заставить различные группы (или части группы) эволюционировать в разных направлениях. При достаточном разногласия, две группы поло воспроизводимых организмов могут стать достаточно отличными, чтобы образовать отдельные вид, особенно, если способность к межвидового скрещивания между двумя группами потеряно.

Опыты показывают, что все живые организмы на Земле имеют общего предка. Этот вывод был сделан, основываясь на общей наличии Л-аминовых кислот в белках, наличия общего генетического кода во всех живых существ, возможности классификации по наследству по категориям, вкладываемые, гомологии последовательностей ДНК и общности найпидставовиших биологических процессов.

Хотя первые упоминания об идее эволюции достигают давности, новейшей, современной формы она приобрела в трудах Альфреда Уоллеса и Чарльза Дарвина в их совместной статье в Линнеевського общества в Лондоне (Linnean Society of London) и позже в книге Дарвина «Происхождение видов» (1859). В 1930-х гг. Синтетическая теория эволюции объединила эволюционную теорию с генетикой Грегора Менделя.

Эволюция организмов происходит из-за изменений в наследственных признаках. Например, цвет глаз у человека есть наследственным признаком, которую индивид получает от своих родителей. Наследственные признаки контролируются генами. Совокупность генов одного организма является его генотипом.

Совокупность всех признаков, формирующих структуру и поведение организма называется фенотипом. Эти признаки возникают в результате взаимодействия генотипа этого организма с условиями внешней среды. То есть не каждый фенотипической признак организма наследуется. Например, загар обусловлена ​​взаимодействием генотипа человека с солнечным светом, таким образом загар не успадкуеться. В общем, люди загорают по-разному, что следует из их генотипа. Например, у некоторых людей присутствует такая наследственный признак как альбинзим. Альбиносы не загорают и очень чувствительны к солнечному излучению — они легко получают солнечные ожоги.

Причины эволюции

Матричное копирование с ошибками

В основе жизни на Земле лежит процесс копирования молекул нуклеиновых кислот — ДНК и РНК. Процесс копирования осуществляется матричным принципом комплементарности: одна молекулы нуклеиновой кислоты может образовать парную для себя, а с этой парной молекулы считывается молекула, идентична исходной. Таким образом, молекулы ДНК и РНК способны к неограниченному размножению.

При копировании непременно возникают ошибки из-за несовершенства системы репликации. Через эти ошибки копии ДНК и РНК содержат небольшие различия, которые, однако, нарастают с течением времени. Такой процесс самовитворення с изменениями называют конвариантною редупикациею.

К неограниченного воспроизведения с ошибками способны некоторые неодушевленные системы, например, кристаллы или некоторые химические циклы. Но живое отличается тем, что может передавать эти ошибки в неизменном виде следующим поколениям. Эти ошибки, или мутации, практически не меняют физико-химические свойства молекул нуклеиновых кислот, но влияют на информацию, считывается из них живыми организмами. Таким образом, живые организмы проявляют наследственность и изменчивость своих признаков, к которым приводят соответственно копирования и мутации в молекулах нуклеиновых кислот.

Гомеостаз и стабильность онтогенеза

Постоянное воспроизводство ДНК с ошибками приводит к тому, что имеется в каждой молекуле генетическая информация со временем сильно меняется. Современные живые организмы имеют системы защиты от избыточного изменения последовательности нуклеотидов молекулы ДНК. К ним относятся ферменты репарации, подавители мобильных элементов генома, противовирусные защитные механизмы и т.

Тем не менее, гены все равно передаются в следующее поколение с некоторыми изменениями, в результате чего популяция живых организмов одного вида обычно не содержит особей, в которых вся последовательность ДНК одинакова. При этом фенотипическая изменчивость зачастую меньше генетическую, поскольку взаимодействия между различными генами в онтогенезе подавляют влияние изменений в отдельных генах. Таким образом, многоклеточные организмы достигают стабильности индивидуального развития, приводит к сохранению видового нормы.

Выборочное выживания и размножения

Молекулы РНК и ДНК, а также живые организмы размножаются с разной эффективностью в зависимости от собственных свойств и условий окружающей среды. Организмы могут погибнуть, не дожив до времени размножения, а те, что выжили, оставляют разное количество потомков. Те организмы, выживших и эффективно размножились, смогли это сделать через две группы причин: соответствие их вариантов генов условиям среды или стечения обстоятельств, не связанные с «качеством» аллелей. Согласно влияние первой группы на распространение аллелей в популяции описывается понятием естественный отбор, а второй группы — понятием генетический дрейф.

Естественный отбор

Естественный отбор — это выборочное переживания (длительное выживание) и размножения наиболее приспособленных к условиям окружающей среды особей в популяции. Чем больше приспособлена растение или животное, тем больше вероятность ее дожития до репродуктивного периода, а также тем больше потомков она оставит. Приспособленность зависит от наличия в генотипе особи аллелей генов, способствующих переживанию и размножению. Поскольку все организмы в популяции имеют различные генотипы, то при стабильных условиях количество носителей более выгодных в этих условиях аллелей генов будет расти в поколениях.

Кроме того, условия среды создают конкуренцию за выживание и размножение между организмами. В связи с этим, организмы, обладающие аллелями, которые предоставляют им преимущество перед их конкурентами, передают эти аллели потомкам. Аллели, которые не предоставляют такого преимущества, не передаются следующим поколениям.

Генетический дрейф

Дрейф генов — это процесс изменений частоты аллелей, который вызывается причинами, которые не связаны с влиянием аллелей на приспособленность особей. Поэтому генетический дрейф относят к нейтральным механизмов эволюции генов и популяций. Соотношение между влиянием естественного отбора и дрейфа генов в популяции меняется в зависимости в силу отбора и эффективного размера популяции (число особей, способных к размножению). Естественный отбор обычно играет большую роль в больших популяциях, а дрейф генов преобладает в малых. Преобладание дрейфа генов в малых популяциях может даже приводить к фиксации вредных мутаций. Как результат, изменение численности популяции может значительно изменять ход эволюции. Эффект бутылочного горлышка, когда численность популяции резко снижается и в результате теряется генетическое разнообразие, приводит к большей однородности популяций.

Общий ход эволюции

Первые следы жизни на Земле датированы 3,5-3,8 млрд лет назад. Это остатки прокариотических жизни — строматолиты. Около 3 млрд лет назад появляются первые фотосинтетики, которыми были цианобактерии. Первые эукариот появились около 1,6-1,8 млрд лет назад. Это приводит к «кислородной катастрофы» — резкое повышение концентрации кислорода в атмосфере Земли. Многоклеточные эукариот возникали многократно в разных группах, однако первые надежные окаменелости имеют возраст около 750 млн лет назад (криогеновий период), а появление разнообразной океанической биоты связана с Вендский периодом (едиакарська биота, около 600 млн лет назад). Появление скелетных животных и их богатых остатков произошла в кембрийском периоде около 550-520 млн лет назад. Тогда появилось большинство современных типов животных.

В силурийском периоде растения впервые вышли на сушу. В девоне на суше поселились первые земноводные и членистоногие животные. В пермском периоде появились рептилии, которые доминировали на Земле на протяжении мезозойской эры. Несколько групп терапсидних рептилий дальше начало млекопитающим. В меловом периоде появились птицы и начался расцвет цветковых растений. В кайнозойскую эру доминировали млекопитающие, а также достигли расцвета насекомые. В антропогене одна из групп приматов, гоминиды дала начало эволюции человека. В плейстоцене-голоцении человек становится геологической силой, влияющей на эволюцию всей биосферы.

Свойства эволюции

Ход эволюции жизни обнаруживает несколько сквозных закономерностей, которые являются объективными и часто описаны математически. Эволюционная биология изучает дополнительные механизмы эволюции или новые возможности реализации исходных принципов, которые позволят коренным образом понять сущность этих закономерностей. Основные свойства эволюции таковы: появление адаптированных к среде организмов, морфо-функциональный прогресс, появление новых органов и структур (эмерджентность), переход к половому размножению, вымирание видов, рост биоразнообразия.

Адаптация

Современные виды выглядят хорошо приспособленными к условиям среды, в которой они существуют. При этом адаптации ограничены той средой, где они обычно используются: при перемещении организма в новую среду он часто становится полностью неприспособленным или по крайней мере менее приспособленным, чем «коренные» жители других условий. До появления эволюционной картины мира достаточно четкое соответствие свойств организма условиям его «родного» среды настолько поражала исследователей, они считали ее следствием действия сверхъестественных сил. Тем не менее, адаптация является почти обязательным следствием эволюции, поскольку менее адаптированы к условиям среды организмы делают все меньший вклад в генетическое разнообразие популяции благодаря естественному отбору. Вместе с тем, происхождение самых адаптаций необязательно зависит от отбора, а может быть побочным следствием других адаптаций или вообще стечению обстоятельств (следствием генетического дрейфа).

Прогресс и автономизация

В ходе эволюции безъядерные бактериальные клетки дают начало сложным клеткам эукариот. Эукариот в дальнейшем приобретают многоклеточности, образуют ткани и органы. Животные развивают нервную систему, имеют сложное поведение, которая позволяет им выживать во многих средах. Человек как верхушка эволюции животных достигла возможности жить в любых средах, в том числе и внеземных.

Эмерджентность

По ходу эволюции часто происходит перекомбинация частей организмов и генов, изменение функции старых структур. Однако некоторые процессы и части организмов возникали впервые. Фотосинтез у цианобактерий, белки репликации ДНК, аппарата трансляции, чешуя рыб и тому подобное.

Раздельнополость

Первые животные были гермафродитами, а среди высших гермафродитов почти нет.

Пол и рекомбинация

В бесполых организмов гены наследуются вместе (они привитыми) и не смешиваются с генами других индивидов во время размножения. Потомки же половых организмов содержат случайную смесь хромосом их родителей за счет независимого сортировки. В течение родственного процесса гомологичной рекомбинации половые организмы обмениваются ДНК между двумя гомологичными хромосомами. Рекомбинация и независимое сортировки не меняют частот аллелей, но меняют их ассоциативность друг с другом, производя потомков с новыми комбинациями аллелей. Пол обычно увеличивает генетическую изменчивость и может увеличить скорость эволюции. Однако, бесполость может иметь преимущества в определенных условиях, поскольку в некоторых организмов она эволюционировала повторно. Бесполость может позволить двум наборам аллелей генома дивергуваты и, как следствие, привести к возникновению новых функций. Рекомбинация позволяет равноправным аллелям, которые находятся вместе наследоваться независимо. Однако частота рекомбинаций низкая (примерно два случая в одну хромосому за одно поколение). Как результат, гены, размещаются рядом на одной хромосоме не всегда розтасовуються друг от друга в процессе генетической рекомбинации и имеют тенденцию наследоваться вместе. Этот феномен носит название сцепления генов. Сцепление генов оценивается путем измерения частоты появления двух аллелей на одной хромосоме (измерение неравновесного сцепления генов). Набор аллелей, которые обычно успадковуютсья вместе называется гаплотипом. Это имеет важное значение когда один из аллелей определенного гаплотипа предоставляет большое преимущество в борьбе за существование: положительный естественный отбор приведет селективное чистки (англ. Selective sweep), которое приведет к тому, что частота других аллелей этого гаплотипа тоже возрастет. Этот эффект называется генетическим автостопом (генетический хитчхайкинг). Когда аллели не могут быть разделены за счет рекомбинации (например в Y-хромосоме млекопитающих), тогда происходит аккумуляция вредных мутаций (см. Храповик Мюллера). Изменяя комбинации аллелей, половое размножение приводит изъятие вредных и распространение полезных мутаций в популяции. Кроме того рекомбинация и сортировки генов могут обеспечивать организмы новыми выгодными комобинациямы генов. Но этот положительный эффект балансуетсья тем, что пол снижает скорость размножения (см. Эволюция полового размножения) и может вызывать разрушение выгодных комбинаций генов. Причины эволюционирования полового размножения до сих пор остаются не совсем понятными и этот вопрос пока активной областью исследований в области эволюционной биологии. Оно стимулировало новые идеи о механизмах эволюции, например гипотезу Красной Королевы.

Вымирание

В истории Земли неоднократно происходили массовые вымирания живых организмов. Такими были вымирания на границе вендского и кембрийского периода, когда погибла едиакарська биота, пермского и триасового периодов, мелового и эоценового периодов. После массовой гибели старых групп организмов начинался расцвет тех групп, которые пережили вымирание. Вымирание меньших масштабов, такие как пост-ледниковое вымирания крупных млекопитающих после последнего ледникового периода, тоже приводят к изменению групп организмов. Человек привела к вымиранию видов, наиболее уязвимых к ее техногенной деятельности.

Рост биоразнообразия

Палеонтологические находки, несмотря на свою неполноту и ограниченность, демонстрируют наличие роста биоразнообразия как в океане, так и на суше.

Уровни эволюции

На разных уровнях организации живого свойства эволюции и ее механизмы играют разную роль.

  • генный
  • геномный
  • популяционный
  • видовой
  • таксонний
  • экосистемный
  • биосферный

Мутации

Генетическая вариация возникает за счет случайных мутаций, возникающих в геномах организмов. Мутации — это изменения в последовательности нуклеотидов ДНК, вызываемых радиоактивным излучением, вирусами, транспозонами, химическими мутагенами, а также ошибками копирования, которые возникают во время мейоза или репликации ДНК. Эти мутагены производят несколько различных типов изменений в последовательности нуклеотидов ДНК: они могут не вызвать никакого эффекта, изменять продукт гена, или вообще прекратить функционирование гена. Исследования на дрозофилах показали, что если мутации вызывают изменения белка, который кодируется определенным геном, то последствия скорее всего будут губительными. Примерно 70% таких мутаций приводят к определенным нарушениям, остальные являются нейтральными или полезными. Поскольку мутации часто вредно влияют на клетки, то в процессе эволюции у организмов возникли механизмы репарации ДНК, которые устраняют мутации. Таким образом, оптимальная частота мутаций это компромисс между платой за высокую частоту вредных мутаций и платой за метаболические затраты (например, синтез ферментов репарации) для уменьшения этой частоты. Некоторые организмы, например ретровирусы, имеют такую ​​высокую частоту мутаций, почти каждый их потомок будет владеть мутированным геном. Такая высокая частота мутаций может быть преимуществом, поскольку эти вирусы эволюционируют очень быстро, таким образом избегая ответов иммунной системы.

Мутации могут включать значительные участки ДНК, например дупликации генов, является сырым материалом для эволюции новых генов. У животных в среднем за каждый миллион лет происходят дупликации от десятков до сотней генов. Большинство генов, которые имеют общий предковый ген, принадлежат к одной генетической семьи. Новые гены образуются несколькими способами, в целом за счет дупликации предковых генов, либо за счет рекомбинации частей различных генов, в результате чего формируются новые комбинации нуклеотидов с новыми функциями. Новые гены формируют новые белки с новыми функциями. Например, для формирования структур глаза человека, которые ответственны за восприятие света используются четыре гена: трех для цветного зрения (колбочки) и один для ночного (палочки) все эти гены произошли от одного предкового гена. Другое преимущество дупликации гена, или даже целого генома состоит в том, что увеличивается избыточность (избыточность) генома; это позволяет одному гену приобретать новых функций, в то время как копия этого гена выполняет начальную функцию. Изменения в хромосомах могут проходить в результате крупных мутаций, когда сегменты ДНК внутри хромосомы отделяются, а затем снова встраиваются в другом месте хромосомы. Нариклад, две хромосомы рода Homo слились с образованием хромосомы 2 человека. Это слияние не состоялось в филогенетических рядах других обезьян, то есть они имеют эти хромосомы разделенными. Важнейшей ролью таких хромосомных перестроек в эволюции является ускорение дивергенции популяций с формированием новых видов за счет того, что происходит меньше межпопуляционных скрещиваний.

Последовательности ДНК, которые могут перемещаться по геному (Мобильные генетические элементы), такие как транспозонов, формируют большую часть генетического материала генетического материала растений и животных и имеют важное значение в эволюции геномов. Например, более миллиона последовательностей Alu представлены в геноме человека и сейчас эти последовательности служат для выполнения регуляции экспрессии генов. Другой эффект этих мобильных ДНК состоит в том, что они могут вызывать мутации существующих генов, или даже удалять их, увеличивая таким образом генетическое разнообразие.

Проблема происхождения жизни

Признание эволюции Католической церковью

Католическая церковь признала в энциклике папы Пия XII лат. Humani Generis, что теория эволюции может объяснять происхождение тела человека (но не его души), призвав, однако, к осторожности в суждениях и назвав теорию эволюции гипотезой. 1996 Папа Иоанн Павел II в послании к Папской академии наук подтвердил признание теистического эволюционизма как допустимой для католицизма позиции, заявив, что теория эволюции — это более чем гипотеза. Поэтому среди католиков буквальный, младоземельный, креационизм жидкий (в качестве одного из немногочисленных примеров можно привести Дж. Кина). Склоняясь к теистического эволюционизма и теории «разумного замысла», католицизм в лице своих высших иерархов, в том числе и выбранного 2005 папы Бенедикта XVI, тем не менее, безусловно отвергает эволюционизм материалистический.