Гипотеза о том что мир виртуальный. Ник Бостром: Мы почти наверняка живем в компьютерной симуляции. Скептическое отношение к компьютерной симуляции

Наверняка вы задумывались о том, что окружающая действительность в чем-то похожа на компьютерную игру. Однозначных доказательств, что наша реальность является виртуальной пока нет, впрочем, как и доказательств обратного. Однако, «ЗА» эту, на первый взгляд, абсурдную идею, говорят некоторые странности строения нашего мира.
В 2003 году Илон Маск сделал обескураживающее заявление: мы находимся внутри компьютерной симуляции. Веским доводом, по его мнению, является то, что ещё 30 лет назад графика игр была на самом низком примитивном уровне, а сейчас – почти не отличить от реальности, а через 100 лет у человечества появится возможность смоделировать вселенную. А что если какая-нибудь суперцивилизация уже спрограммировала нашу вселенную и множество других, и в этих искусственных мирах стало возможным сделать свои виртуальные симуляции, и так бесчисленное количество раз. Тогда получается, что симулированных миров – миллиарды, а настоящая реальность – одна, и шанс оказаться в этой единственной истинной реальности — один к миллиарду. Вывод – мы живём в компьютерной симуляции.
Но давайте отойдём от этих абстрактных рассуждений и обратимся к фактам из жизни. Какие обоснованные аргументы есть в пользу устройства мира, как матрицы.
1. В нашей вселенной господствуют точные науки. Это говорит о том, что наш мир может быть описан при помощи цифрового кода.
2. Идеальные условия для зарождения и существования жизни. Расстояние до солнца (комфортный температурный режим), размеры и масса Земли (подходящая сила гравитации), и многие другие параметры как будто специально созданы для этого.
3. Человеку не доступна большая часть светового и звукового спектра. Возможно, именно там спрятано то, что нам не следует видеть и слышать (какие-то лишние детали, условные проводки или какой-нибудь мусор, всё то, что могло бы навести на идею о нереальности мира).
4. Религия. Возможно, эта вера в создателя, заложенное в нашу программу врождённо, или это ощущение, что «он есть» у нас присутствует на интуитивном уровне.
5. Противники концепции цифровой симуляции утверждают, что искусственный мир должен быть проработан с колоссальной точностью и детализацией, коей является наша реальность, а это невозможно. Но откуда нам знать, какая действительность на самом деле, может, она в разы более усложнённая, нежели наша. К тому же всё многообразие мира можно подробно не прорабатывать, в тех местах, куда игрок никогда не попадёт (далёкий космос), или там, куда он не смотрит в данный момент (эффект наблюдателя в микромире), что снижает нагрузку на мощность компьютера.
6. Почему мы одни во вселенной? Не наблюдается ничего, что указывало бы на существование разумной жизни в космосе. Может, он просто картинка?
Что будет если человечество вплотную приблизится к разгадке? Для нас ничего не изменится: выйти из симуляции мы не сможем, потому что являемся всего лишь строчками программного кода и наша реальность, это то, что транслируют в мозг органы чувств. Нас можно только выключить.

Правообладатель иллюстрации Thinkstock Image caption Разговоры ученых о нереальности нашего мира ложатся на подготовленную массовой культурой почву

Гипотеза о том, что наша Вселенная - это компьютерная симуляция или голограмма, все активнее будоражит умы ученых и филантропов.

Образованное человечество еще никогда не было так уверено в иллюзорности всего происходящего.

В июне 2016 года американский предприниматель, создатель SpaceX и Tesla Илон Маск, оценил вероятность того, что известная нам "реальность" является основной - как "одну многомиллиардную". "Для нас будет даже лучше, если окажется, что то, что мы принимаем за реальность, - уже является симулятором, созданным другой расой или людьми будущего", - отметил Маск.

В сентябре Банк Америки предупредил своих клиентов, что с вероятностью 20-50% они живут в Матрице. Эту гипотезу аналитики банка рассмотрели наряду с другими приметами будущего, в частности, наступлением (то есть, если верить изначальной гипотезе, виртуальной реальности внутри виртуальной реальности).

В свежем материале New Yorker про венчурного капиталиста Сэма Алтмана говорится, что в Кремниевой долине многие одержимы идеей, что мы живем внутри компьютерной симуляции. Два техно-миллиардера якобы пошли по стопам героев фильма "Матрица" и тайно профинансировали исследования по вызволению человечества из этой симуляции. Их имена издание не раскрывает.

Стоит ли воспринимать эту гипотезу буквально?

Короткий ответ - да. Гипотеза исходит из того, что ощущаемая нами "реальность" обусловлена лишь небольшим объемом информации, которую мы получаем и которую способен обработать наш мозг. Мы ощущаем предметы твердыми из-за электромагнитного взаимодействия, а видимый нами свет - лишь небольшой раздел спектра электромагнитных волн.

Правообладатель иллюстрации Getty Images Image caption Илон Маск считает, что человечество создаст виртуальный мир в будущем, либо мы уже являемся персонажами чьей-то симуляции

Чем больше мы расширяем границы собственного восприятия, тем больше убеждаемся, что Вселенная состоит по большей части из пустоты.

Атомы состоят из пустого пространства на 99,999999999999%. Если ядро атома водорода увеличить до размеров футбольного мяча, то его единственный электрон расположится на расстоянии 23 километров. Состоящая же из атомов материя составляет всего 5% известной нам Вселенной. А 68% составляет темная энергия, о которой науке практически ничего не известно.

Иными словами, наше восприятие реальности - это "тетрис" по сравнению с тем, что в действительности представляет собой Вселенная.

Что по этому поводу говорит официальная наука?

Словно герои романа, пытающиеся прямо на его страницах постичь замысел автора, современные ученые - астрофизики и квантовые физики - проверяют гипотезу, которую еще в XVII веке выдвинул философ Рене Декарт. Он предположил, что "какой-то злокозненный гений, весьма могущественный и склонный к обману", мог заставить нас думать, что существует внешний для нас физический мир, в то время как на самом деле небо, воздух, земля, свет, очертания и звуки - это "ловушки, расставленные гением".

В 1991 году писатель Майкл Талбот в книге "Голографическая Вселенная" одним из первых предположил, что физический мир подобен гигантской голограмме. Некоторые ученые, впрочем, считают "квантовый мистицизм" Талбота псевдонаукой, а связанные с ним эзотерические практики - шарлатанством.

Куда большее признание в профессиональной среде получила книга 2006 года "Программируя Вселенную" профессора Массачусетского технологического института Сета Ллойда. Он считает, что Вселенная - это квантовый компьютер, который вычисляет сам себя. Также в книге говорится, что для создания компьютерной модели Вселенной человечеству недостает теории квантовой гравитации - одного из звеньев гипотетической "теории всего".

Правообладатель иллюстрации Fermilab Image caption "Голометр" стоимостью 2,5 млн долларов не смог опровергнуть известные нам основы мироздания

Наш мир и сам может быть компьютерной симуляцией. В 2012 году команда исследователей Калифорнийского университета в Сан-Диего под руководством россиянина Дмитрия Крюкова пришла к выводу, что такие сложные сети, как Вселенная, человеческий мозг и интернет имеют одинаковую структуру и динамику развития.

Эта концепция мироустройства предполагает "небольшую" проблему: что произойдет с миром, если вычислительные способности создавшего его компьютера исчерпаются?

Можно ли экспериментально подтвердить гипотезу?

Единственный подобный эксперимент поставил директор Центра квантовой астрофизики лаборатории Ферми в США Крейг Хоган. В 2011 году он создал "голометр" : анализ поведения пучков света, исходящих из лазерных излучателей этого устройства, помог ответить по меньшей мере на один вопрос - является ли наш мир двухмерной голограммой.

Ответ: не является. То, что мы наблюдаем, действительно существует; это не "пиксели" продвинутой компьютерной анимации.

Что позволяет надеяться, что в один прекрасный день наш мир не "зависнет", как это часто происходит с компьютерными играми.

20, Ноя, 2016

Некоторые физики и инженеры считают, что человечество живёт в виртуальной реальности. Они верят: набирающая популярность «теория симуляции» будет доказана так же, как было доказано в свое время, что Земля не является центром Вселенной.

Иногда, когда Илон Маск не разрабатывает планы по использованию своей огромной ракеты, созданной с целью покинуть загнивающую Землю и , он говорит о своём убеждении, что Земля даже не настоящая, и мы, возможно, живём в компьютерной симуляции.

«Существует всего один шанс на миллиард, что мы живём в основной реальности»

Маск, один из жителей Кремниевой долины, очень заинтересован в «гипотезе симуляции», которая утверждает, что то, что мы принимаем за действительность, на самом деле гигантская компьютерная симуляция, созданная более изощрённым интеллектом. Звучит как фильм «Матрица»? Так и есть.

Какие существуют признаки того, что мы живём в «матрице»?

Сэм Альтман, венчурный капиталист и глава Y Combinator, в своём профиле The New Yorker пишет, что два миллиардера, промышляющие высокими технологиями, тайно нанимают учёных, чтобы вызволить нас из симуляции. Но что это значит?

Распространённый ныне довод в пользу гипотезы симуляции предложил оксфордский профессор Ник Бостром (хотя идея датируется еще XVII веком и принадлежит Рене Декарту). В статье под названием «Мы живём в компьютерной симуляции?» Бостром говорит о том, что члены прогрессивного «постчеловеческого» общества, располагая достаточными вычислительными мощностями, могли бы запустить симуляции своих предков во Вселенной. Это предположение распространилось благодаря наблюдениям за современными тенденциями в области технологий, включающими рост виртуальной реальности и усилия составить схему человеческого мозга.

Готово ли человечество создавать собственные симулированные миры?

Допустим, ничего сверхъестественного нет в том, что порождает сознание, и это всего лишь продукт очень сложной архитектурной конструкции в человеческом мозге. В таком случае мы сможем его репродуцировать. «Скоро не останется никаких технических ограничений, стоящих на пути к созданию машин, имеющих собственное сознание», - считает Рич Терилл, учёный лаборатории реактивного движения NASA.

В то же время становятся всё более и более сложными, и в будущем мы сможем создавать в них симуляции мыслящих существ.

«Сорок лет назад у нас был “Понг” - два треугольника и точка. Такими были игры. Теперь у нас есть фотореалистичные 3D-симуляторы, в которые миллионы людей играют одновременно. Эти симуляторы становятся лучше с каждым годом. А скоро у нас будет - прогнозирует Маск.


Pong - одна из первых видеоигр. Разработана Фирмой Atari в 1972 году. Фотография: de.wikipedia.org CC BY-SA 2.0

«Ещё немного изменений, и игры будут неотличимы от реальности»

Такую точку зрения разделяет и Терилл. «Если кто-то совершит прогресс на несколько десятков лет вперёд, очень скоро мы станем обществом, где искусственно созданные существа живут в симуляциях, в которых условия жизни намного более благоприятные, чем наши».

Если симулированных интеллектов намного больше, чем органических, тогда шансов, что мы находимся среди настоящих интеллектов, всё меньше. Терилл поясняет это таким образом: «Если в будущем будет больше цифровых версий людей, живущих в симулированных пространствах, чем есть сейчас, тогда почему бы не сказать, что мы уже часть этого?»

Кто мог создать симуляцию нашей Вселенной?

Раздробленная на части (субатомные частицы) Вселенная действует математически. Она подобна пикселизированной видеоигре - вот ещё один из поводов поверить в то, что Вселенная является симуляцией. «Даже явления, о которых мы думаем, как о бесконечных - время, энергия, пространство, звук - имеют ограничения в размерах. Если так и есть, тогда наша Вселенная исчисляемая и имеет предел. Эти свойства позволяют ей быть симулированной», - сказал Терилл.

«Говоря откровенно, скорее всего мы живём в симуляции»

Так кто создал эту симуляцию? «Будущие мы», - многозначительно ответил он.

Как понять, что мы находимся в симуляции?

Не всех убедила данная гипотеза. Маск Тегмарк, профессор физики в Массачусетском технологическом институте, ответил на несколько вопросов:

- Это логически возможно, что мы в симуляции?

- Действительно ли мы находимся в симуляции?

Я бы сказал нет. Чтобы привести такой аргумент, в первую очередь мы должны знать какие фундаментальные законы физики задействованы в симуляциях. А если мы находимся в симуляции, у нас нет и представления об этих законах. Я как раз преподаю в MIT симулированные законы физики», - обосновал Тегмарк.

Гарвардский физик-теоретик Лиза Рэндалл еще более скептично относится к этому. «Я не вижу к этому никаких аргументов. Никаких реальных доказательств нет. Высокомерно думать, что мы были бы тем, что мы есть, если бы были симулированными», - комментирует мисс Рэндалл.

Рич Терилл считает: осознать, что мы, вероятно, живём в симуляции, было бы таким же шоком, какой испытал Коперник, когда понял, что Земля не центр Вселенной. «Это была настолько сложная теория, что её и допустить не могли». До Коперника учёные пытались объяснить необычное поведение движений планет с помощью сложных математических моделей. «Когда они допустили предположение, понять всё остальное стало намного проще», - добавляет Рич Терилл.

Терилл утверждает, что проще поверить в то, что мы живём в симуляции. Сложнее - что мы первое поколение, которое поднялось из грязи и эволюционировало в сознательные существа. Гипотеза симуляции также учитывает особенности квантовой механики, особенно проблему измерения, на основании которой вещи становятся определёнными только после наблюдений. Тегмарк не видит в этом смысла: «У нас есть проблемы в физике, но мы не можем сваливать на симуляцию провалы в их решении».

Как проверить эту гипотезу?

«Десятки лет это было проблемой. Учёные из кожи вон лезли, чтобы исключить мысль о том, что нам необходим разумный наблюдатель. Может, решение заключается в том, что вам действительно нужна разумная сущность как разумный игрок видеоигры», - сказал мистер Терилл.

С одной стороны, нейрофизиологи и исследователи искусственных интеллектов могут проверить, возможно ли симулировать человеческий разум. Пока что было доказано, что машины хорошо играют в шахматы и го, корректно ставят подписи под изображениями. Однако, может ли машина иметь сознание? Мы не знаем.

С другой стороны, учёные могут попытаться найти признаки симуляции. «Представьте, что кто-то симулирует нашу Вселенную… Для некоторых идея моделирования будет заманчивой. Вы могли бы найти доказательства этому в эксперименте», - отмечает Тегмарк.

Для Терилла гипотеза симуляции имеет «красивый и глубокий» смысл. Фотография: Unsplash , CCO

Во-первых, гипотеза предлагает научную основу для какой-нибудь формы жизни после смерти или пространства действительности за пределами нашего мира. «Вы не нуждаетесь в чуде, религии или чем-либо особенном, чтобы поверить. Это вытекает естественным образом из законов физики», - он говорит.

Во-вторых, это значит, что скоро мы сами сможем создавать симуляции.

«У нас будет сила разума и материи, и мы сможем создать что угодно и захватим все миры»

Перевод и адаптация Татьяна Люлина, редакция

П о оценкам многих специалистов, примерно лет через 50-100 вычислительные возможности компьютеров вырастут в миллионы раз. Благодаря этому мы сможем создавать виртуальные миры настолько реалистичными, что их персонажи фактически обретут разум, но не будут знать о том, что живут в симуляции.

Кое-кто из учёных даже выдвинул идею, что гипотетически мы все можем быть героями компьютерной игры.

Гипотеза о виртуальности нашего мира была впервые широко представлена в 2003 году философом Ником Бостромом. Он предположил, что если существуют множество достаточно развитых цивилизаций, они склонны создавать симуляции Вселенной или её частей, и мы с большой вероятностью живём в одной из них.

Ник Бостром

Летом 2016 года Илон Маск заявил, что существует лишь один шанс из миллиарда, что наша реальность не подделка. То есть по факту он на все 100 уверен, что мы живём в матрице (про это несколько месяцев назад мы уже делали отдельное видео).

Илон Маск

Ну а сегодня попытаемся найти доказательства тому, что наш мир и правда является всего лишь симуляцией. Поехали!

Видеоигры

Для того чтобы понять суть первого доказательства, надо зайти издалека, а именно с того, как работают видеоигры.

Grand Theft Auto V

Например, играя в GTA V , находясь на одной из улиц города этой игры, вы можете видеть, как по дороге едут машины, по тротуару ходят люди и, в целом, кипит жизнь.

Свернув за угол и перейдя на другую улицу, вы видите то же самое.

Из-за этого создаётся иллюзия, что это же сейчас происходит и на других улицах данного города. Но это не так.

На самом деле, на других районах в этот момент ничего не происходит. Пока вы там не появитесь, эти улицы будут пусты, там даже текстуры не будут прогружены. Но как только вы туда придёте, незаметно для вас там моментально появятся всё те же пешеходы, автомобили, животные и т. д.

Так вот – по такому принципу работают все видеоигры. Делается это с целью оптимизации нагрузки на «железо» вашего компьютера. То есть, когда в игре вы смотрите вперёд, компьютер максимально фокусирует изображение перед вашим взором. При этом текстуры и объекты позади вас, на которые вы не смотрите, сильно упрощаются или вовсе исчезают.

Это и позволяет облегчить нагрузку на вашу игровую платформу, выдавая максимально красивую графику.

Теперь попробуем всё в той же GTA V посмотреть на город с высоты. Перед нами всё становится видно как на ладони.

Мы можем наблюдать, как одновременно по многочисленным улицам едут машины. Спрашивается, как мощности игровой консоли хватает на просчёт такого числа машин? А вся хитрость состоит в том, что у автомобилей вдали включается очень упрощённая физика.

Например, если мы выпустим ракету в те машины, то от взрыва они даже не разлетятся в разные стороны.

Но как только мы подойдём поближе к одной из улиц, так сразу физика автомобилей усложнится, и они, наконец, начнут реагировать на взрывы.

Sid Meier’s Civilization V

Теперь давайте посмотрим на игру Цивилизация V .

Если я резко перемещу камеру в другой конец карты, то мы можем увидеть, как на наших глазах локация быстро прогружается, хотя она это должна была сделать за пару мгновений до того, как мы на неё посмотрели.

Но дело в том, что у Цивилизации V несовершенный игровой движок, потому мы можем замечать такие задержки. Локация будто бы понимает, что за ней начали наблюдать и быстро внешне становится такой, какой её задумывали разработчики. Получается, что наблюдатель влияет на игровой мир даже простым своим наблюдением.

Так вот, как я и говорил, по такому принципу видеоигры будут работать всегда. Даже через много лет, когда компьютеры будут настолько мощными, что смогут одновременно просчитывать все крупные объекты в виртуальном большом городе, всё равно останутся какие-нибудь мелкие детали, например, насекомые или микробы, которые прогружаться будут только тогда, когда на них смотрит наблюдатель, т. е. игрок. И всё ради оптимизации! Это было важное предисловие.

Теперь перейдём к первому доказательству теории матрицы.

Эксперимент с двумя щелями

Давайте познакомимся с квантовой механикой, а точнее с экспериментом с двумя щелями. Это самый знаменитый эксперимент в истории физики. Его повторяли больше чем любые другие эксперименты, потому что у него были ошеломляющие результаты, и все учёные хотели получить их лично. Именно этот эксперимент перевернул с ног на голову всю физику и вдохновил многих учёных изучать квантовую механику.

Твёрдые частицы

Чтобы понять суть этого эксперимента, мы сначала должны посмотреть на то, как ведут себя частицы.

Если мы будем обстреливать щит с прорезью небольшими твёрдыми шариками, то на экране, о который они бьются, мы увидим одну полоску.

Если мы добавим ещё одну щель и будем обстреливать щит, то на экране мы закономерно увидим две полоски.

Волны

А теперь давайте посмотрим, как в этом случае себя поведут волны.

Волны прошли сквозь прорезь и распространились, ударяя экран с наибольшей силой строго по линии прорези.

Яркая полоска на экране показывает силу удара. Она похожа на полосу в первом эксперименте с твёрдыми шариками.

Но! Когда мы добавляем вторую щель, то происходит нечто иное. Если вершина одной волны встречается с вершиной другой, то они гасят друг друга, и на экране мы увидим интерференционный узор из многих полосок.

Точка, где пересекаются две вершины волн, даёт наивысшую силу удара, и мы видим яркие полосы, а там, где волны гасят друг друга, ничего нет.

Таким образом, если мы пропускаем твёрдые шарики через две щели, то видим две полоски.

А вот с волнами мы видим интерференционный узор из многих полосок.

Пока всё понятно.

Элементарные частицы

А теперь давайте посмотрим на кванты. Фотон – это очень маленькая частица света. Если мы пропустим фотоны через одну щель, то увидим одну полоску на экране, как и в случае с твёрдыми шариками.

Но если мы пропустим фотоны через две щели, то ожидаем увидеть две полоски. Но нет!

Каким-то мистическим образом на экране появляется интерференционный узор из многих полосок.

Как же так? Мы выпустили фотоны, – маленькие частицы света – ожидая увидеть две полоски, но вместо этого видим много полосок, как в случае с волнами. Это ведь невозможно!

Позже учёные выяснили, что такое же странное поведение показывают не только фотоны, но и электроны, протоны и различные атомы. Физики долго ломали голову над этой загадкой.

Они подумали: быть может, эти маленькие шарики бьются друг о друга, из-за чего отталкиваются в разные стороны и поэтому создают интерференционный узор из многих полосок?

Тогда физики стали выстреливать по одной микрочастице друг за другом, чтобы не было ни малейшего шанса их взаимодействия. И вот тут у учёных случился когнитивный диссонанс: вскоре на экране вновь появился интерференционный узор, нарушая все законы физики.

Как же так? Как элементарные частицы могут создавать узор, словно волны? Ведь их выпускали по одной! Этого никто не понимал.

По логике получалось, что частица будто бы разделялась надвое, проходила через обе щели и ударялась сама о себя. Просто бред какой-то!

Физики были полностью обескуражены этим. Они решили подсмотреть, через какую щель частица проходит на самом деле. Они поставили измеряющий прибор возле одной из щелей и выпустили электрон.

Но в квантовой механике – больше мистики, чем учёные могли себе представить. Когда они начали наблюдать, частицы снова стали вести себя как маленькие шарики и произвели изображение двух полосок, а не интерференционный узор из многих полосок.

То есть сам факт измерения или наблюдения за тем, через какую щель прошёл электрон, выявил, что он проходит через одну прорезь, а не через две. Электрон решил повести себя иначе, как будто знал, что за ним наблюдают. Наблюдатель разрушил волновую функцию частицы лишь только фактом своего наблюдения! Это вам ничего не напоминает?

Да, всё это очень сильно похоже на работу игрового движка. Создаётся впечатление, что наша Вселенная будто запущена на каком-то компьютере, мощности которого недостаточно, чтобы с точностью просчитывать движение каждой отдельной микрочастицы в пространстве, поэтому он это делает по упрощённой модели в виде волны вероятности. А более точные просчёты начинает делать только тогда, когда за конкретной частицей начинают наблюдать, чтобы не сломать для наблюдателя иллюзию реальности его мира. Такой приём облегчает нагрузку на «железо» вычислительной машины – всё, как в видеоиграх!

Но вся проблема в том, что 100 лет назад, когда учёные пытались дать объяснение аномальным результатам эксперимента с двумя щелями, не было видеоигр, и потому физики не додумались выдвинуть гипотезу о том, что мы живём в виртуальной реальности.

Интерпретации квантовой механики

Вместо этого было выдвинуто множество других теорий. Самой известной из них была придумана в 1927 году в городе Копенгаген.

Копенгагенская интерпретация

Учёные Нильс Бор и Вернер Гейзенберг предположили, что элементарные частицы – это как бы одновременно и волны, и частицы.

Нильс Бор и Вернер Гейзенберг

Так вот, для того чтобы измерить электрон, т. е. провести над ним наблюдение, его надо ударить о кванты измерительного прибора. И именно из-за этого удара волновые функции электрона «схлопываются», и он становится только частицей. Таким образом, сам наблюдатель не влияет своим наблюдением на частицу – влияют только кванты измерительного прибора.

Так как это объяснение квантовой механики было сформулировано в городе Копенгаген, его назвали Копенгагенской интерпретацией.

Забавно, но если эта интерпретация верна, то она всё равно не опровергает гипотезу матрицы, т. к. её можно подстроить и под это объяснение.

Например, фотоновая программа может распространяться в сети как волна, а затем перезапускаться в тот момент, когда узел перегружен, превращаясь в частицу. Это объясняет и квантовые волны, и коллапс волновой функции.

Многомировая интерпретация

После Копенгагенской интерпретации второй по популярности объяснение причин странного поведения микрочастиц в эксперименте с двумя щелями стала Многомировая интерпретация.

Её суть заключается в том, что, возможно, существуют как бы параллельные вселенные, в каждой из которых действуют одни и те же законы природы.

И что при каждом акте измерения квантового объекта наблюдатель как бы расщепляется на несколько версий. Каждая из этих версий «видит» свой результат измерения и действует в соответствии с ним в своей вселенной.

Вот такое странное объяснение!

В какую из этих интерпретаций больше верить – решайте сами.

Например, опрос учёных, сделанный в 1997 году, на симпозиуме под эгидой UMBC (University of Maryland, Baltimore County – Мэрилендский университет в Балтиморе) показал, что большинство физиков не верят ни копенгагенской, ни многомировой интерпретации. Голоса распределились следующим образом:

  • 13 человек проголосовало за Копенгагенскую интерпретацию;
  • 8 – за Многомировую;
  • несколько учёных – за другие, менее популярные интерпретации;
  • 18 физиков высказались против всех предложенных интерпретаций на тот момент времени.

До сих пор спор насчёт правильной интерпретации квантовой механики продолжается по всему миру. Он ведётся между учёными университетов, на конференциях и даже в барах и кафе.

Ну а тем временем в 2006 году развитие технологий позволило впервые провести ещё более хитроумную версию эксперимента с двумя щелями.

Называется она эксперимент с отложенным выбором.

Эксперимент с отложенным выбором

В упрощённом варианте суть эксперимента примерно такая: микрочастицы всё так же пропускаются сквозь барьер с двумя отверстиями. Однако на этот раз физики смогли провести наблюдение тогда, когда частицы уже прошли сквозь отверстия, но ещё не ударились о проекционный экран.

Представьте, что вы стоите перед экраном с закрытыми глазами, а сквозь отверстия проходят микрочастицы в виде волн, но в последнюю секунду перед их ударом об экран вы решили открыть глаза. И вот тут произошло нечто удивительное.

В этот момент электроны становятся частицами, такими, какими они были при запуске из электронной пушки.

Электроны ведут себя так, как будто бы они вернулись в прошлое, будто не прошли сквозь два отверстия, а только через одно, будто они никогда не проявляли свойств волны. Это не укладывается в голове!

Вселенная, пространство, время, скорость света

Следующим намёком, что мы живём в матрице, может являться тот факт, что у нашей Вселенной есть максимальная скорость, хотя и не ясно почему.

Благодаря Эйнштейну все мы знаем, что ничего не может двигаться быстрее, чем фотоны в вакууме. Скорость света является константой.

Дело в том, что наш мир устроен настолько странным образом, что чем быстрее движется объект, тем сильнее замедляется его время. Это было доказано многочисленными экспериментальными проверками.

Доходя до скорости 300 тыс. км / с, время вообще останавливается. Говоря простым языком, если бы у вас был космический корабль, способный разгоняться до 300 тыс. км /с, и вы бы решили на нём полететь в далёкую галактику, которая находится на расстоянии 3 млрд. световых лет от нас, то вы бы туда долетели за одно мгновение, т. к. в процессе полёта время на корабле остановилось бы полностью, а в этот момент на Земле прошло бы 3 млрд. лет.

Так вот, фотоны света и двигаются со скоростью 300 тыс. км / с, и поэтому их время стоит на нуле, а потому разогнаться ещё быстрее просто невозможно. Ведь для увеличения скорости надо ещё сильнее замедлить время, а оно и так на нуле. Вот и возникает вопрос: почему наша Вселенная устроена таким образом, что скорость замедляет время? Почему пространство и время взаимосвязаны? Это очень и очень странно для реального мира, но довольно понятно для виртуального.

Если мы живём в матрице, то скорость света – это продукт обработки информации, следовательно, наш мир обновляется с определённой скоростью.

Процессор суперкомпьютера обновляется 10 квадриллионов раз в секунду.

А наша Вселенная обновляется в триллион раз быстрее, но принципы в основном те же.

Ну а время при росте скорости замедляется, потому что виртуальная реальность зависит от виртуального времени, где каждый цикл обработки является одним «тиком».

Многие геймеры знают, что когда компьютер подвисает, вследствие лага, игровое время тоже замедляется. Точно так же время в нашем мире замедляется с ростом скорости или рядом с массивными объектами, что свидетельствует о виртуальности Вселенной, в которой мы живём.

В корабле, летящем на огромной скорости, все циклы обработки его системы подвисают в целях экономии. Во всяком случае, такое можно допустить.

Квантовая запутанность

Принцип неопределённости

Представьте себе летящую в пространстве микрочастицу, например, фотон света. Во время полёта фотон, так сказать, вращается вверх или вниз, т. е. обладает спином.

Хотя на самом деле фотоны не вращаются, но для простоты понимания это сравнение сюда подходит.

Так вот, когда все физики планеты ломали голову над причинами столь мистических результатов эксперимента с двумя щелями, учёные пришли к выводу, что, скорее всего, до того, как над микрочастицей проводится наблюдение, у неё даже не бывает конкретного спина.

То есть, пока мы не посмотрим на фотон, он летит и при этом не может определиться, в какую сторону ему вертеться, находясь в суперпозиции неопределённости. Словно матушке-природе слишком тяжело точно просчитывать вращение каждой отдельной элементарной частицы в пространстве.

А потому это всё делается по упрощённой схеме, и только после того, как на частицу смотрит наблюдатель, она становится более физически сложной и её вращение, наконец, начинает просчитываться в одном из двух направлений.

Возможность передачи информации быстрее скорости света

Так вот – дальше всё оказалось ещё более невероятным. Когда Эйнштейн размышлял над теорией квантовой механики, он предложил очень интересный эксперимент, который, по его мнению, должен был показать ошибочность или неполноту Копенгагенской интерпретации.

Альберт Эйнштейн

Суть эксперимента такова. Если атом цезия испускает два фотона в разных направлениях, то их состояние из-за закона сохранения импульса становится взаимосвязанным. Это называется квантовая запутанность.

Чтобы было проще понять, объясним так: если один из запутанных фотонов вертится сверху вниз, значит, второй фотон обязан вращаться снизу вверх, т. е. в противоположную сторону. Иначе и быть не может.

Мы с вами уже знаем, что учёные предполагали, что до проведения наблюдения фотон не может определиться, в какую сторону ему вертеться. Выходило, что это происходит, даже если он запутан с другим фотоном и их вращение обязано идти в противоположные друг другу стороны.

Получается, что проведя измерение над одним из запутанных фотонов и узнав, в какую сторону он крутится, мы автоматически заставим второй фотон крутиться в противоположном направлении, хотя над ним мы даже не проводили наблюдения. Причём, второй фотон обязан моментально принять свой спин, как бы далеко он ни находился от первого фотона, над которым мы провели измерение.

Получалось, что даже если запутанные фотоны разнести друг от друга в разные концы Вселенной и провести наблюдение над одним из них, то второй фотон получит информацию об этом в квадриллионы раз быстрее скорости света и моментально изменит свой спин на противоположный. Просто невероятно!

Это нарушало законы физики. Ведь, насколько нам известно, ничего не может двигаться быстрее скорости света. Тогда каким образом второй фотон узнаёт так быстро, что над первым провели измерение? Каким образом до него информация доходит так быстро? Что-то не сходится…

Вот потому Эйнштейн был не согласен с объяснением квантовой механики, говоря, что мгновенная связь между микрочастицами в физической реальности просто невозможна. Он предполагал, что, скорее всего, когда запутанные фотоны вылетают из атома, в них уже бывает изначально заложена информация о том, кто в какую сторону будет вращаться, когда над ними проведут наблюдение. То есть фотоны ещё до измерения запрограммированы на вращение в определённую сторону. Тогда получалось, что проведя измерение над одной частицей, мы никак не влияли на другую, а только узнавали её спин.

Но в квантовой механике гораздо больше мистики, чем предполагал Эйнштейн. Через 17 лет после того, как он умер с чувством правоты, выяснилось, что этот гений жестоко ошибался.

Ирландский физик Джон Белл сделал нечто невозможное.

Джон Белл

Он додумался до одного невероятно хитроумного и очень сложного эксперимента, который бы доказывал или опровергал теорию того, что в элементарные частицы заранее бывает вложена информация о том, в какую сторону им надо будет вертеться, когда над ними проведут наблюдение.

Результаты эксперимента были поразительными: они чётко и ясно показали, что до наблюдения частица действительно понятия не имеет, в какую сторону она должна будет вертеться, даже если она находится в запутанном состоянии с другой частицей. Только строго после измерения фотон рандомно выбирает себе спин. Получается, что запутанные элементарные частицы могут очень легко передавать друг другу информацию гораздо быстрее скорости света!

Физики были полностью ошеломлены этим. Никто не мог понять, как такое вообще возможно. В квантовой механике появилось ещё больше загадок, чем раньше.

Практическое измерение скорости передачи информации между элементарными частицами

В 2008 году группа швейцарских исследователей из университета Женевы задалась целью выяснить, а насколько быстро вторая запутанная частица узнает о том, что над первой провели измерение?

Они разнесли два запутанных фотона на расстояние 18 км друг от друга, провели измерение одной частицы и стали регистрировать, с какой скоростью на это отреагирует вторая.

У учёных была технология, которая позволила бы заметить задержку в 100 тыс. раз превышающую скорость света.

Но никаких задержек выявлено не было. Это означало, что запутанные фотоны умеют сообщаться друг с другом как минимум 100 тыс. раз быстрее скорости света, а скорее всего, вообще моментально!

Теория симуляции

Но хотя насчёт запутанных фотонов Эйнштейн и ошибался, в одном он, возможно, всё же был прав, это когда говорил, что мгновенная связь в физическом мире невозможна.

Что ж, в реальном физическом мире, может, и правда, невозможна. Вот только Эйнштейн не предполагал, что мы, вероятно, живём в цифровой виртуальной реальности.

И вот именно и в ней-то как раз мгновенная связь очень легко объясняется.

С этой точки зрения, когда два фотона запутываются, их программы объединяются для совместного ведения двух точек. Если одна программа отвечает за верхний спин, а другая – за нижний, их объединение будет отвечать за оба пикселя, где бы те ни были.

В моменте измерения одной запутанной частицы её программа рандомно выбирает ей один из спинов, а программа второй запутанной частицы реагирует на это соответствующим образом.

Этот код перераспределения игнорирует расстояния, потому что процессору не нужно ходить к пикселю, чтобы попросить его перевернуться, даже если экран большой, как сама Вселенная!

Уже много лет существует устойчивое выражение, что квантовую механику никто не понимает. Однако если предположить, что наш мир виртуален, то всё становится очень даже понятно.

Для описания мира элементарных частиц и их взаимодействий учёные прибегают к квантовой механике, а для изучения макромира, т. е. больших объектов, используется Общая теория относительности Эйнштейна. Но природа каким-то образом объединила два эти мира, а значит, должна существовать теория, которая одинаково бы подходила к описанию субатомного мира и мира крупнейших тел во Вселенной. И вот как раз гипотеза симуляции прекрасно с этим справляется!

Ею также легко можно объяснить загадку Большого взрыва, искривление пространства, туннельный эффект, тёмную энергию, тёмную материю и много чего ещё.

В последнее время некоторые умы говорят, что теория симуляции даже в случае своего подтверждения не изменит ничего.

Однако с этим утверждением очень трудно согласиться, т. к. официальное подтверждение может сильно подстегнуть более глубокие исследования в этом направлении, благодаря чему нам, возможно, удастся найти новые недостатки нашего мира, т. е. условности, а их уже можно использовать для создания новых технологий.

Например, если квантовые эффекты вызваны именно тем, что мы живём в симуляции, значит, создание таких вещей, как квантовые компьютеры или квантовая криптография и можно назвать использованием условностей нашего мира. Потому теория симуляции в случае своего подтверждения может изменить многое…

Как бы там ни было, с каждым годом учёные находят всё больше и больше косвенных намёков на то, что мы живём в матрице. И если это продолжится теми же темпами, то лет через 30 теория виртуальности нашего мира станет такой же официальной в мире науки, как и теория эволюции.

Возможно, уже скоро в школах ученикам будут рассказывать, что они живут не в реальном мире. Хотя знать, что ты являешься всего лишь сложной программой, обладающей чувствами, самосознанием, немного демотивирует.

Однако Илон Маск, наоборот, считает, что это как раз-таки мотивирует, т. к. данная гипотеза симуляции решает парадокс Ферми и показывает, что разумные цивилизации способны избежать самоуничтожения и технологически доходить до создания своих виртуальных миров. Потому для Маска жизнь в матрице является приятной утопией, и он очень хочет, чтобы это оказалось правдой.

Тема дебатов: «Является ли Вселенная компьютерной симуляцией». Шесть ученых: физики-теоретики и философ рассуждают об оправданности идеи симуляции реальности. Слова Рене Декарта: «Откуда вы можете знать, что вас не дурачит некий злой гений, создавая ваше представление о мире, окружающем нас?» служат своеобразным эпиграфом диспута. В центре внимания тезис – хватит ли современной научной базы данных для полноценного аргументирования всех за и против.

Состав участников симпозиума

Приглашенные участники форума почти синхронно пришли к некоторым выводам по вопросу о симуляции вселенской реальности.

На конференцию пришли коллеги и друзья ее организатора и модератора Нила Деграсс Тайсона, чтобы размышлять, высказывать свои мнения и даже спорить:

  • директор центра разума мозга и сознания, профессор нью-йоркского университета Дэвид Чалмерс;
  • ядерный физик, научный сотрудник Массачусетского технологического института Зоре Давуди;
  • профессор физики из университета Мэриленда Джеймс Сильвестр Гейтс;
  • профессор физики Гарварда Лиза Рендалл;
  • астрофизик из Массачусетского технологического института Макс Тэгмарк.

Взгляды и суждения ученых оказались интересны большому числу неравнодушных к смелым научным воззрениям, в корне, меняющем веками сложившееся мировоззрение. Билеты на конференцию, выставленные на реализацию в Сети, были проданы за три минуты!

Как участники окунулись в заявленную проблему

Первой взяла слово Зоре Давуди. Тема симуляции Вселенной возникла в процессе исследований схемы взаимодействия частиц. Итоги ее работы привели к размышлениям, почему законы, открытые исследователями не могут быть применены ко всей Вселенной. Сравнительный анализ компьютерных программ привел к формулированию гипотезы: Вселенная сама по себе может быть симуляцией. Ученым это показалось забавным, и они провели ряд изысканий в этом направлении.

Макс Тегмарк, признавший себя «облаком кварков», озвучил тезис о подчинении законам математики динамике и взаимосвязей частиц. Если бы он был персонажем компьютерной игры, задавшим себе вопрос о сути этой игры, то мог бы заметить математически выверенную программу. Спроецировав модель компьютерной игры на представления о Вселенной можно увидеть аналогии, а, следовательно, выходит, что там и там игра и симуляция. К таким выводам его подтолкнули фантазии Айзека Азимова.

Джеймс Гейтс, в своих исследованиях заметил при решении уравнений, связанных с электронами, кварками и суперсимметрии моменты, связывающие модели микро- и макромиров. На этом основании он выражает согласие с предыдущими выступающими. Джеймс особо подчеркнул важность трудов Айзека Азимова на формирование его выводов.

Вселенная паровая машина

Наверное, будет наивным проецирование результатов компьютерных исследований на всю Вселенную. Скорее всего, в какой–то очень небольшой степени аналогия верна, но компьютеры то тут причём? Так же, полтора столетия назад многомудрые ученые, которых тогда уже было немало, вдруг объявили Вселенную огромной паровой машиной. Ведь физические процессы, происходящие в агрегате, бессмысленно проецировать и на более масштабные конструкции, для получения шокирующих выводов.

Лиза Рендалл, задалась вопросом: зачем нам это надо? Если Вселенная – это компьютерная симуляция, то почему мир, данный человеку в ощущениях, никуда не исчез? Кто создал эту симуляцию, и какую роль играет человек в такой системе?

Философ Дэвид Чалмерс отметил фундаментальность вопроса, порассуждал о роли фантаста Айзека Азимова в возникновении у профессионального научного сообщества подобных вопросов. Он прочел не только всю художественную фантастику, но многие фундаментальные труды об истории и научных фактах. На этом основании Дэвид начал размышлять о соотношении сознания и разума, к которому он подходил как философ. Ведь философия позволяет отодвинуться и взглянуть на вещи со стороны. Вопрос о симуляции перекликается с проблемой, озвученной Декартом в эпиграфе.

По аналогии сформулируем сегодняшнюю проблему: «откуда тебе знать, что ты не живешь в симуляции вроде матрицы?» И если да, то получается, что ничего из этого якобы не существует. Вопрос интересен потому, что ничего из того, что мы можем знать, эту симуляцию не может исключить. Но если мы живем в симуляции, то она реальна, ведь в ней содержится вся информация, и в этом нет ничего плохого.

Виртуальные эксперименты – путь границам измеримого

Зоре Давуди. Гипотетические эксперименты были основаны на уже имеющейся научной базе позволили предположить возможность конструирования виртуальной модели, от простой компьютерной симуляции к вселенской. То есть виртуальные экспериментаторы строили Вселенную с самого основания.

Однако на определенном этапе процесс исследования натыкается на ограниченность нужных научных знаний, с другой стороны множество информационных точек, из которых можно выстроить теорию невозможно вводить для расчетов в современные компьютерные системы, чисто технически. Не существует одного пути изучения процесса для получения правильного результата.

Нил Тайсон вывел: мы не можем этого сделать, потому что мы ограничены, а, следовательно, и сама Вселенная ограничена.

Зоре Давуди – в этом то и суть! Если мы основываемся на предположении, что симуляция лежит в основе Вселенной, то симулятор Вселенной – это конечный компьютерный ресурс, то он, как и мы симулирует Вселенную в ограниченных условиях. Поэтому используется метод наложения моделей ограниченных симуляций на бесконечную Вселенную при совмещении с другими расчетами, явлениями и, к примеру, космическими лучами, составляют путь к границам измеряемого.

Аргументы «за» и «против»

Макс Тегмак. Фантастическая идея, что мы живем в мире симуляции, впервые озвучена философом Ником Бостромом. Он отметил, что физические законы позволят нам делать мощные компьютеры гигантских размеров, которые могут симулировать разум. Если мы не уничтожим себя и Землю, то в будущем, большая часть мышления и вычислений будет осуществляться подобными компьютерами, и, следовательно, если действия разума будут симулированы, то мы вероятно тоже симулированы. Это аргумент «за».

Уточнение ведущего: если симулирование вселенной станет развлечением для тех, кто получит доступ к грандиозному компьютеру, то мы живем в симулированных вселенных, даже если одна из них и реальна.

Контраргументом может быть размышление о симулированной Вселенной. Если предположить, что мы живем в симулированной Вселенной, изучаем законы физики «симулированного мира», и обнаруживаем, что в нем мы можем создавать гигантские суперкомпьютеры и всякие симулированные разумы. То есть выходит мы создали симуляцию, внутри симуляции. Потом, во внутренней симуляции могут тоже появиться суперкомпьютеры и новые симуляции, что-то вроде матрешки.

Оба аргумента ущербны потому, что мы не знаем истинных законов физики исходной вселенной, здесь есть философский подвох.

Несовершенство науки и образа мыслей человека

Как мы при помощи научных методов можем протестировать идею, живем мы в симуляции или нет. Одним из лучших способов – это поиск свидетелей существования программиста. Помимо этого нам стоит смотреть на непонятные вещи. Невозможно придумать более непонятного, чем сознание, можно ли его хоть как-то описать математически, если это невозможно сделать, то гипотеза симуляции Вселенной будет неактуальна.

Но в некотором смысле даже математика несовершенна, она не всегда доказуема. Нет доказательств некоторым теоремам. Возможно, то чем идет разговор не всегда требует математического обоснования. Но может быть, живя и информационном поле, мы искусственно навязываем себе проблему, которая никак не связана с реальностью, либо есть более качественная гипотеза, которая найдется на следующем этапе развития человечества. Следовательно, находясь на определенном уровне развития, ученые дают объяснения процессов не более чем могут. Заглядывая за грань познаваемого, мы получаем проблему, у которой на данный момент нет, и не может быть разрешения.

Наивные потуги «объять необъятное»

Если нам не нужна гипотеза, что мы живем в мире симуляции, нам стоит просто обойтись без нее, сказал философ Дэвид Чалмерс, может наука нам и представит уравнения и вычисления, совмещаемых с гипотезой про симуляцию, но гораздо проще, если это не так. Но похожа ли Вселенная на шахматную доску, где всех ходы записаны? Скорее всего, никто не знает верного ответа. Но есть много других игр, а здесь перед нами одна Вселенная, где мы можем проверять свои предположения.

Многие люди думают, что все вокруг существует ради них. Однако, скорее всего это не так, мы мучаемся в поисках правильного понимания окружающего мира и в частности Вселенной, а она по-большому счету равнодушна ко всем нашим потугам. Вселенная является удивительной тайной, а человеку нужно быт поскромнее в попытках «объять необъятное». Мир был бы лучше, если бы люди были немного скромнее. Поэтому истинной задачей физики является поиск скрытой простоты вещей.

Физика не теряет свою актуальность

Цель физики, смотря на сложную и беспорядочную Вселенную искать в ней скрытые шахматные правила, которые на самом деле просты. Сначала нужно представить, что это возможно, а потом, напрягая все до края силы выяснять истину. Однако даже если мы докопаемся до того, что не живём в симуляции и начнём исследовать «настоящую реальность», где гарантии, что эта «настоящая реальность» не симуляция?

По сути, реальна ли Вселенная, или симулирована не важно, ибо каждый день мы переживаем, а как? Реально, или воображаемо не очень существенно. На данный момент у нас нет научных законов, при помощи которых можно доказать тезис о симуляции, как нет и достаточных оснований, чтобы полностью его опровергнуть.

В будущем, возможно, такие аргументы найдутся. Следит ли некий «Программист» за нашим существованием или нет? Доказательно утверждать нельзя. Самое легкое – это представить все в нашей жизни творением неких высших существ.