Сколько населения в сингапуре. География Сингапура: природа, климат, население. Уличная еда у них дешевая и вкусная

Этапы формирования географической оболочки Земли. Исследователи выделяют три этапа формирования географической оболочки Земли: добиогеновый, биогеновый и антропогеновый.

Добиогеновый этап (4,6 млрд лет - 570 млн лет). На рассматриваемом этапе сформировались такие компоненты географической оболочки Земли, как лито-, гидро- и атмосферы.

Наиболее простейшие микроорганизмы (бактерии) появились на Земле примерно 3,8-3,5 млрд лет назад и не могли оказать должного влияния на процесс формирования географической оболочки Земли.

Биогеновый этап начался 570 млн лет назад и характеризуется развитием органического мира. В результате на этом этапе сформировались биосфера и основные черты современной географической оболочки.

Антропогеновый этап охватывает период продолжительностью 3 млн лет.

В настоящее время хозяйственная деятельность человека оказывает серьезное воздействие на развитие географической оболочки Земли.

В результате появились экологические и демографические проблемы, в частности, проблема Аральского моря. Это вынудило человечество обратить особое внимание на вопросы охраны окружающей среды.

Общие законы развития географической оболочки Земли. Развитие географической оболочки Земли и природных комплексов подчиняется строгим законам. Законы о развитии географической оболочки нередко называют общегеографическими.

Знание общегеографических законов помогает человеку рационально пользоваться природными ресурсами, эффективно охранять окружающую среду, сохранять естественное экологическое равновесие и др.

В систему общегеографических законов входят: закон сохранения энергии; периодичность, или ритмичность повторяемости событий; закон географической зональности и азональности и др.

Единство географической оболочки Земли. Закон обмена веществ обеспечивает единство всех территориальных природных комплексов и географической оболочки в целом.

Территориальные комплексы независимо от размеров пребывают в одном из трех физических состояний (твердом, жидком или газообразном) и образуют единое целое благодаря сложным динамичным связям.

Компоненты географической оболочки Земли, будь то рельеф, климат, воды, растительность, животный мир и т.д., подчиняются одним и тем же географическим законам.

Обмен веществ. Энергетический обмен свойствен всем компонентам географической оболочки.

Процесс энергетического обмена представляет собой не что иное, как движение. Например, влага, которая содержится в атмосфере, перемещается вместе с воздушными массами из одной точки в другую, т.е. в вертикальном и горизонтальном направлениях. Воды Мирового океана так же, как и воздушные массы, перемещаются не только горизонтально, но и вертикально.

Подвижность свойственна и твердой оболочке Земли, или литосфере. На это, в частности, указывает вулканическая деятельность. Во время извержения вулкана на поверхность в виде лавы изливается не только внутреннее вещество (магма), но и происходит как горизонтальное, так и вертикальное перемещение горных пород.

Ритмичность. Каждому из нас приходилось сталкиваться с таким природным явлением, как ритмичность. Простейший тому пример - суточная ритмичность, т. е. последовательная смена дня и ночи. То же самое относится и к смене времен года.

Суточная и сезонная ритмичность отражается в смене погодных и климатических условий, в режиме поверхностных вод (смена половодья меженью), а также в поведении растений и животных.

Географическая зональность. Закономерное изменение природных (физико-географических) условий или территориально-природных комплексов от экватора к полюсам (горизонтальная или широтная зональность) и по мере поднятия вверх, в горы (вертикальная или высотная зональность), называется зональностью.

Закон географической зональности придает каждой точке на Земле присущие ей закономерные черты.

Внимание! Если Вы нашли ошибку в тексте, выделите её и нажмите Ctrl+Enter для уведомления администрации.

Географическая оболочка — это область взаимодействия внутрипланетарных эндогенных и внешних — экзогенных и космических процессов, которые осуществляются при активном участии органического вещества. Отсюда границы географической оболочки должны определяться условиями, при которых возможно существование белковых тел, составляющих основу жизни на Земле. Нижняя граница регламентируется изотермой 100°С, т.е. располагается на глубине порядка 10 км; верхняя — на высоте 10-15 км под озоновым слоем, экранирующим ультрафиолетовое излучение Солнца, губительное для живого вещества.

Таким образом, толщина географической оболочки составляет 20-25 км и включает верхи , гидросферу, атмосферу и насыщающее их органическое вещество.

Особенности эволюции географической оболочки определяются в первую очередь темпами накопления свободной воды на поверхности планеты. Именно здесь в пограничной области процессы взаимодействия идут наиболее активно, создавая многообразие форм земной поверхности, очертаний континентальных, морских и океанических областей, разнообразие органического мира, наземных и подводных .

Проекция внутрипланетарных процессов на земную поверхность и последующее взаимодействие их с солнечным излучением в конечном счете отражается в формировании главных компонентов географической оболочки — верхов земной коры, рельефа, гидросферы, атмосферы и биосферы. Следовательно, для выявления закономерностей ее эволюции необходимо исследовать динамику эндогенного режима планеты, эволюции магматизма, свободной воды и рельефа земной поверхности. С появлением воды создаются предпосылки для формирования кислородной и развитой биосферы.

Современное состояние географической оболочки — результат ее длительной эволюции, начиная с возникновения . Правильное понимание процессов и явлений различного пространственно-временного масштаба, протекающих в географической оболочке, требует, по меньшей мере, многоуровенного их рассмотрения, начиная с глобального — общепланетарного. Вместе с тем исследование процессов такого масштаба до последнего времени считалось прерогативой геологических наук. В общегеографическом синтезе информация этого уровня практически не использовалась, а если и привлекалась, то довольно пассивно и ограниченно. Однако отраслевое подразделение естественных наук достаточно условно и не имеет четких границ. Объект исследований у них общий — Земля и ее космическое окружение.

В результате термохимических реакций, идущих в зоне внешнего ядра Земли образуются металлы, их окислы, летучие вещества и вода. Легкие продукты реакций и избытки тепла диффундируют под подошву каменной оболочки — перисферы. Из-за более низкой теплопроводности последней они не сразу прорвутся на поверхность планеты, а, скапливаясь под подошвой перисферы, формируют зону вторичного разогрева верхней мантии — астеносферу. Периодическая разгрузка астеносферы от избытков магматического материала, летучих и тепла в результате вулканизма сопровождается формированием в ней разуплотненного пространства. Вышележащая каменная оболочка перисферы, следуя уменьшающемуся объему, пассивно проседает над этими областями, образуя отрицательные формы рельефа на поверхности Земли. Области, где такого проседания не происходит, сохраняются в виде остаточных возвышенностей. Все это подтверждается приуроченностью трапповых провинций континентов к синеклизам платформ, тесной связью массовых платобазальтовых излияний с образованием океанических впадин в кайнозое (Орленок, 1985). Уменьшение объема Земли за счет уплотнения протовещества, диссипации водорода, других газов и продуктов диссоциации воды сопровождается сокращением радиуса планеты и площади ее поверхности. Согласно нашим расчетам, убыль массы за всю составила примерно 4,2·10 25 г, что соответствует сокращению объема на 4,0·10 26 см 3 и радиуса на 630 км. Таким образом отображает прежде всего уровни различного опускания сферы в ходе общей контракции. Этот процесс неравномерен как в пространстве, так и во времени. Неравномерные вдоль радиуса опускания сферы ведут к образованию разновысотных поверхностей выравнивания.

Иными словами, сокращение поверхности сжимающейся сферы достигается не всеобщим пликативным сжатием ее каменной оболочки, как это предполагалось Эли де Бомоном и Э. Зюссом, исходивших из модели первоначально огненно-жидкой Земли, а опусканием на разные уровни отдельных ее блоков. И в этом главное отличие “холодной” контракции от классической контракции Зюсса, помимо ее исходной посылки. Огибающая этих дискретных поверхностей равна по площади начальной поверхности Земли.

Сокращение поверхности Земли вследствие уменьшения ее объема и прогрессирующего уменьшения радиуса ведет к увеличению контрастности и глубины расчлененности рельефа твердой перисферы. Следовательно, размах амплитуды дифференцированности рельефа планеты прямо пропорционален ее возрасту и внутренней активности и обратно пропорционален экзогенному фактору, характеризующему интенсивность разрушения рельефа, что в конечном итоге определяется наличием или отсутствием свободной воды на поверхности планеты. Океанические и континентальные блоки — это наивысшие гармоники контракции, образовавшиеся в ходе глобального сжатия сферы, каменная оболочка которой — перисфера, проседая над разуплотненными пространствами астеносферы, пассивно приспосабливается к уменьшающему объему шара. Впадины и возвышенности в пределах этих главных геотекстур гармоники сжатия более высокого порядка, наложившиеся в более поздние этапы развития Земли в ходе ее контракции.

Следы контракционной эволюции можно наблюдать на других планетах и звездах. Многократное гравитационное коллапсирование массивных звезд по мере выработки термоядерного горючего считается основой современной теории их эволюции. Энергетику горизонтальных движений в условиях Земли теоретики неомобилизма ищут в механизме мантийной конвекции. В условиях звезды такой механизм подтверждается наблюдениями и обоснован теоретически. На холодной и неоднородной планете, где преобладают гравитационные силы сжатия, существование такого механизма постулируется. Однако надежные доказательства его существования вряд ли могут быть найдены. Термодинамические условия на планетах и звездах различны, отсюда различна и динамика их внешних оболочек. Мобильность плазменной оболочки предопределена необходимостью переноса избытка тепла из недр звезды. Горизонтальная мобильность каменной оболочки планеты в условиях отсутствия сплошного атмосферного слоя не имеет удовлетворительного энергетического объяснения.

Когда и как образовалась земная и каковы пути ее дальнейшей эволюции? Это оставалось вне внимания исследователей. Вместе с тем вода — главнейший итог эволюции протовещества. Ее постепенное (до рубежа между мезозойской и кайнозойской эрами) накопление на поверхности планеты сопровождалось и разноамплитудными нисходящими движениями перисферы. Это в свою очередь определило ход эволюции газовой оболочки, рельефа, соотношения площади и конфигурации суши и моря, а с ними и условий седиментации, и жизни. Иными словами, вырабатываемая планетой и выносимая на поверхность свободная вода по существу обусловила ход эволюции географической оболочки. Без нее облик Земли, ее ландшафты, климат, органический мир были бы совершенно иными. Прообраз такой Земли легко угадывается на безводной и безжизненной поверхности Венеры, отчасти Луны и Марса.

Рубеж мезозоя и кайнозоя, характеризуется ускорением выноса свободной воды на поверхность Земли в результате спонтанной дегидратации протовещества (Орленок, 1985). Внешним проявлением этого процесса явилась океанизация Земли. Это общепланетарный процесс, включающий дегидратацию, массовый вулканизм и опускание обширных сегментов перисферы. Стадия океанизации наступает в финале эволюции протопланетного вещества, а общая длительность этого процесса в условиях Земли определяется в 140-160 млн. лет. В ходе океанизации происходит формирование континентальных массивов, постепенное увеличение контрастности их рельефа. Скорость и объемы перемещения протовещества из астеносферы на поверхность Земли и последующая их дезинтеграция и размыв в период океанизации, по-видимому, были значительно выше, чем в доокеаническую эпоху.

Для предшествовавших этапов эволюции были характерны лишь более или менее равномерно распределенные по земной поверхности мелководные . Это подтверждается преимущественно мелководным обликом палеозоя и мезозоя в пределах континентальных блоков, отсутствием широтной дифференциации климата и относительно слабой расчлененностью рельефа. В таких условиях темпы эволюции географической оболочки, включая накопление, перемещение и денудацию выносимого из астеносферы материала, были по меньшей мере на порядок менее интенсивными, чем в эпоху океанизации.

Современные темпы денудации земной поверхности, оцениваемые по объему и массе твердого , составляют примерно 0,8 км/10 7 лет. Они сохранились в среднем такими лишь в последние 60-70 млн. лет, т.е. после начала образования океанических бассейнов и обособления современных континентов. Ускорение процессов денудации вызывалось увеличением амплитуды рельефа и понижением базиса . Следовательно, за 60-70 ·10 6 лет мощность переработанной коры составила примерно 5-6 км.

В раннем фанерозое и докембрии скорость денудации слабо расчлененной земной поверхности была, вероятно, на порядок ниже, т.е. за 3,9·10 9 лет мощность переработанной коры составила примерно 31 км. Общая мощность дезинтегрированных и окисленных за 4·10 9 лет составила 35-37 км. Полученная оценка хотя и весьма приблизительна — сопоставима со средней мощностью земной коры, равной 33 км. Можно предположить, что граница Мохоровичича в ряде случаев представляет погребенную поверхность протопланеты, сложенную веществом возраста более 4·10 9 лет. Вся вышележащая толща сформирована вулканическим материалом, выброшенным из астеносферы на поверхность планеты. Дезинтеграция и окисление этого материала при взаимодействии с солнечным теплом, водой и биосферой совместно с процессами метаморфизма в ходе нисходящей ундуляции перисферы и создали наблюдаемое многообразие форм и состава земной коры — важнейшего элемента географической оболочки.

Важнейшим показателем внутренней активности планеты и эволюции географической оболочки является земная гидросфера. Длительное время существовали представления о постоянстве ее объема или небольших и равномерных поступлениях за геологическое время. Однако количественные оценки эндогенных поступлений и фотолитических потерь земной гидросферы показали, что до рубежа мезозоя и кайнозоя скорость выноса свободной воды на поверхность Земли была на порядок ниже, чем в последние 70 млн. лет.

До юры она составляла порядка 0,01 мм/1000 лет и в кайнозое более 0,1 мм/1000 лет, причем в последние 5 млн. лет достигла наивысшего значения — 0,6 мм/1000 лет (Орленок, 1985). Зная общую массу вулканического материала, можно определить количество воды принесенное на земную поверхность за 4·10 9 лет геологической активности. Поскольку переработке подвергалось протовещество, в котором содержится в среднем 5% воды, от общей массы вулканического материала 3,6·10 25 г — это составит 1,8·10 24 г. Потери на фотолиз за это время при средней скорости 7,0·10 15 г/год составили бы 2,8·10 24 г. Но это при условии, что площадь зеркала морей и праокеана была соизмерима с современной. Однако это более чем в 20 раз превышает общую массу воды переброшенной на поверхность Земли за время ее геологической активности. Отсюда мы получаем еще одно независимое свидетельство, что в докайнозойское время современных размеров не существовало на поверхности планеты, а общая площадь морских бассейнов была более чем на порядок меньше современной общей площади зеркала вод морей и океана. Только при таком соотношении суши и моря приведенное значение фотолитических потерь, которые зависят в первую очередь от площади, поверхность испарения должна быть уменьшена на порядок и более »1,4*10 23 г. Современный содержит 1,6*10 24 г. Общая масса вынесенной на земную поверхность воды оценивается величиной 4,0*10 24 г. Часть воды поступила невулканическим путем (по глубинным разломам, сольфатарам, фумаролам, ювенильные воды). За последние 70 млн. лет темпы выноса воды возросли более чем на порядок и составили 2,2*10 24 г. Таким образом, почти половина выработанной планетной воды поступила за период океанизации.

Итак, Мировой океан — молодое геологическое образование преимущественно кайнозойского возраста. Никогда ранее на Земле не было подобного глубоководного и обширного резервуара свободной воды. Тщетно искать следы древних океанов на современной суше — их там никогда не было. Об этом свидетельствует и преимущественно мелководный облик осадков палеозоя и мезозоя континентальных платформ и океанических котловин.

Расчеты показывают, что Земля еще в состоянии произвести около полутора объемов вод Мирового океана. При сохранении современных темпов дегидратации это займет еще примерно 80 млн. лет, после чего ресурсы протовещества будут выработаны и поступление воды на поверхность полностью прекратится. При отрицательном балансе водных поступлений и современных темпах фотолиза планета может полностью потерять водную оболочку через 20-30 млн. лет.

Каковы прогнозы эволюции географической оболочки на более близкую перспективу? При наблюдаемых темпах поступления эндогенной воды — 0,6 мм в 1000 лет — через 10 тыс. лет уровень океана поднимется на 6 м. Это неизбежно будет сопровождаться ускорением таяния полярных и . Их исчезновение повысит уровень в ближайшие тысячелетия еще на 63 м, что приведет к затоплению всей низменной суши, треть которой лежит на отметке ниже 100 м. Через 100 тыс. лет уровень моря поднимется еще на 60 м и достигнет +120-130 м. Под водой окажутся все Земли. В дальнейшем подъем уровня воды замедлится, пока темпы фотолитических потерь не превысят темпы эндогенных поступлений. Согласно нашим расчетам, максимум океанизации достигнет в ближайшие сотни тысяч лет, а затем начнется падение уровня океана. Таким образом, океанизация — это финал новейшей эволюции планетарного вещества, а продолжительность его в условиях Земли составляет 140-160 млн. лет.

Анализ эволюции географической оболочки будет неполным, если не рассмотреть еще один ее компонент — атмосферу. Как и гидросфера, газовая оболочка Земли формировалась за счет дегазации и вулканизма из зоны астеносферы. В связи с этим следовало бы ожидать, что ее состав будет близок составу глубинных газов, т.е. она должна содержать Н 2 , СН 2 , NН 3 , Н 2 S, СО 2 и др. Вероятно, таким состав атмосферы был бы в глубоком докембрии. С началом фотолиза паров выносимой воды в атмосфере образовались атомы водорода и свободный молекулярный кислород. Свободные атомы водорода поднимались в верхние зоны атмосферы и диссипировали в космос. Молекула кислорода достаточно велика, чтобы диссипировать, поэтому опускаясь в нижние зоны атмосферы, она становится ее важнейшим компонентом. Постепенно накапливаясь, кислород положил начало химическим процессам в земной атмосфере. Благодаря химической активности кислорода в первичной атмосфере начались процессы окисления глубинных газов. Образовавшиеся при этом окислы выпадали в осадок. Часть газов, в том числе и метана, осталась в коллекторах земной коры, дав начало глубинным залежам нефти и .

Фотолитическое образование кислорода атмосферы было основным процессом в начале эволюции Земли. По мере очищения от глубинных газов формировалась вторичная на основе углекислоты и двуокиси азота, создавались условия для появления фотосинтезирующих сине-зеленых водорослей и бактерий. С их появлением процесс насыщения атмосферы кислородом значительно ускорился. При ассимиляции углекислоты зелеными растениями образовывался кислород, а почвенными бактериями — азот. По мере накопления свободной воды на поверхности Земли и появления многочисленных морских бассейнов происходит связывание СО 2 атмосферы и химическое осаждение доломитов. Повсеместное интенсивное химическое доломитообразование, по Н.М. Страхову (1962), завершается в палеозое и замещается биогенным. Следовательно, в палеозое происходит постепенное уменьшение содержания СО 2 в атмосфере и щелочного резерва в морских водах.

Неустойчивая вторичная атмосфера в конце палеозоя переходит в третичную, состоящую из смеси свободного азота и кислорода, причем количество кислорода продолжало накапливаться и в последующее время. Степень устойчивости этой современной атмосферы определяется массой планеты и характером ее взаимодействия с жестким солнечным излучением.

Земля непрерывно теряет газы с молекулярным весом менее 4, т.е. водород и гелий. Время полной диссипации атмосферного водорода при температуре газовой оболочки 1600 К составляет всего 4 года, гелия — 1,8 млн. лет, кислорода — 10 29 лет. Следовательно, постоянное присутствие в атмосфере водорода и гелия свидетельствует о непрерывном пополнении ими за счет глубинных газов. Диссипация начинается с высоты наибольшего разрежения атмосферы, т.е. примерно 500 км. Этот факт подтверждает действенность механизма фотолиза и эффективную потерю массы Землей (Ермолаев, 1975).

Таким образом, эволюция химического состава атмосферы происходила в тесной взаимосвязи с темпами накопления свободной воды на поверхности Земли и формированием морских седиментационных бассейнов. Вплоть до середины палеозоя (карбона), когда наземная растительность распространилась повсеместно, атмосферный кислород накапливался преимущественно фотолитическим путем. Начиная с карбона, этот процесс усилился за счет фотосинтеза. Изменение органического мира мезозоя и кайнозоя, по-видимому, обусловлено в немалой степени “кислородизацией” атмосферы.

В ходе эволюции осваивалась и насыщалась органическим веществом. Адаптируясь к изменяющимся условиям, прошла длинный путь от простейших одноклеточных до сложных многофункциональных органических систем, венцом которых около 50 тыс. лет стал хомо сапиенс. “Человек, как всякое живое вещество, есть функция биосферы, — писал В.И. , — а взрыв научной мысли в XX столетии был подготовлен всем прошлым земной биосферы”. Постепенная цивилизация человечества явилась не чем иным, как формой организации этой новой геологической силы на поверхности Земли. Хомо сапиенс как активный фактор географической оболочки, в отличие от остальной сосуществующей с ним биосферы, характеризуется наличием разума, а с точки зрения экологии разум — это высшая способность целесообразно реагировать на изменение внешних условий.

Из проведенного анализа также видно, что современный баланс суши и моря оказывается величиной непостоянной. Становится также понятным, что зарождение и развитие земной цивилизации пришлось на лучшую пору эволюции географической оболочки в смысле сбалансированности суши и моря, органического мира и т.д. Однако уже в ближайшее время цивилизации придется вести трудную борьбу с наступлением океана, приспосабливаться к новым условиям существования. Многие страны и начиная с XII века уже ведут эту борьбу, возводя дамбы и плотины на морских побережьях и в устьях . Будущее Земли еще в значительной мере зависит от ее внутренних ресурсов. А эти ресурсы, как мы видим, еще достаточно велики.

Географическая оболочка прошла долгий и сложный путь развития. В се развитии выделяют три качественно различных этапа: добиогенный, биогенный, антропогенный.

Добиогенный этап (4 млрд - 570 млн лет) - самый длительный период. В это время происходил процесс увеличения мощности и усложнения состава земной коры. К концу архея (2,6 млрд лет назад) на обширных пространствах уже сформировалась континентальная кора мощностью около 30 км, а в раннем протерозое произошло обособление протоплатформ и протогеосинклиналей. В этот период гидросфера уже существовала, но объем воды в ней был меньше, чем сейчас. Из океанов (и то лишь к концу раннего протерозоя) оформился один. Вода в нем была соленой и уровень солености скорее всего был примерно таким, как сейчас. Но, по-видимому, в водах древнего океана преобладание натрия над калием было еще большим, чем сейчас, больше было и ионов магния, что связано с составом первичной земной коры, продукты выветривания которой сносились в океан.

Атмосфера Земли на этом этапе развития содержала очень мало кислорода, озоновый экран отсутствовал.

Жизнь, скорее всего, существовала с самого начала этого этапа. По косвенным данным, микроорганизмы обитали уже 3,8-3,9 млрд лет назад. Обнаруженные остатки простейших организмов имеют возраст 3,5- 3,6 млрд лет. Однако органическая жизнь с момента зарождения и до самого конца протерозоя не играла ведущей, определяющей роли в развитии географической оболочки. Кроме того, многими учеными отрицается присутствие органической жизни на суше на этом этапе.

Эволюция органической жизни в добиогенный этап протекала медленно, но тем не менее 650-570 млн лет назад жизнь в океанах была достаточно богатой.

Биогенный этап (570 млн - 40 тыс. лег) длился в течение палеозоя, мезозоя и почти всего кайнозоя, за исключением последних 40 тыс. лет.

Эволюция живых организмов на протяжении биогенного этапа не была плавной: эпохи сравнительно спокойной эволюции сменялись периодами быстрых и глубоких преобразований, во время которых вымирали одни формы флоры и фауны и получали широкое распространение другие.

Одновременно с появлением наземных живых организмов стали формироваться почвы в нашем современном представлении.

Антропогенный этап начался 40 тыс. лет назад и продолжается в наши дни. Хотя человек как биологический род появился 2-3 млн лег назад, его воздействие на природу длительное время оставалось крайне ограниченным. С появлением человека разумного это воздействие значительно усилилось. Произошло это 38-40 тыс. лет назад. Отсюда и берет отсчет антропогенный этап в развитии географической оболочки.

Современная структура географической оболочки - результат очень длительной эволюции . В ее развитии принято выделять три основных этапа - добиогенный, биогенный и антропогенный (табл. 10.1).

Таблица 10.1. Этапы развития географической оболочки

Геологические рамки

Длительность, лет

Основные события

Добиогенный

Архейская и протерозойская эры 3700-570 млн лет назад

Живые организмы принимали слабое участие в формировании географической оболочки

Биогенный

Фанерозойский зон (палеозойская, мезозойская и большая часть кайнозойской эры) 570 млн - 40 тыс. лет назад

Около 570 млн

Органическая жизнь - ведущий фактор в развитии географической оболочки. В конце периода появляется человек

Антропогенный

С конца кайнозойской эры до наших дней 40 тыс. лет назад - наши дни

Начало этапа совпадает с появлением современного человека (Homo sapiens). Человек начинает играть ведущую роль в развитии географической оболочки

Добиогенный этап отличался слабым участием живого вещества в развитии географической оболочки. Этот самый длительный этап продолжался первые 3 млрд лет геологической истории Земли - весь архей и протерозой. Палеонтологические исследования последних лет подтвердили идеи, высказанные еще В.И. Вернадским и Л.С. Бергом, что лишенных жизни (как их называют, азойных) эпох, по-видимому, не было в течение всего геологического времени или этот отрезок времени крайне мал. Однако этот этап можно называть добиогенным, так как органическая жизнь в это время не играла тогда определяющей роли в развитии географической оболочки.

В архейскую эру на Земле в бескислородной среде существовали самые примитивные одноклеточные организмы. В слоях Земли, образовавшихся около 3 млрд лет назад, обнаружены остатки нитей водорослей и бактериоподобных организмов. В протерозое господствовали одноклеточные и многоклеточные водоросли и бактерии, появились первые многоклеточные животные. На добиогенном этапе развития географической оболочки в морях были накоплены мощные толщи железистых кварцитов (джеспилитов), свидетельствующих о том, что тогда верхние части земной коры были богаты соединениями железа, а атмосфера характеризовалась очень низким содержанием свободного кислорода и высоким содержанием углекислого газа.

Биогенный этап развития географической оболочки по времени соответствует фанерозойскому зону, включающему палеозойскую, мезозойскую и почти всю кайнозойскую эры. Его длительность оценивается в 570 млн лет. Начиная с нижнего палеозоя органическая жизнь становится ведущим фактором в развитии географической оболочки. Слой живого вещества (так называемый биостром) получает глобальное распространение, с течением времени все более усложняются его структура и строение самих растений и животных. Жизнь, зародившаяся в море, охватила затем сушу, воздух, проникла в глубины океанов.

В процессе развития географической оболочки условия существования живых организмов неоднократно менялись, что приводило к вымиранию одних видов и приспособлению других к новым условиям.

Многие ученые связывают коренные перемены в развитии органической жизни, в частности выход растений на сушу, с крупными геологическими событиями - с периодами усиленного горообразования, вулканизма, регрессий и трансгрессий моря, с движением материков. Принято считать, что крупномасштабные преобразования органического мира, в частности вымирание одних групп растений и животных, появление и прогрессивное развитие других, были связаны с процессами, происходящими в самой биосфере, и с теми благоприятными обстоятельствами, которые создавались в результате деятельности абиогенных факторов. Так, повышение содержания углекислого газа в атмосфере во время интенсивной вулканической деятельности сразу активизирует процесс фотосинтеза. Регрессия моря создает благоприятные условия для формирования органической жизни на обмелевших участках. Существенные изменения экологических условий часто приводят к гибели одних форм, что обеспечивает бесконкурентное развитие других. Есть все основания полагать, что эпохи существенной перестройки живых организмов находятся в прямой связи с основными эпохами складкообразования. В эти эпохи формировались высокие складчатые горы, резко усиливалась расчлененность рельефа, активизировалась вулканическая деятельность, обострялась контрастность сред и интенсивно протекал процесс взаимообмена веществом и энергией. Изменения внешней среды служили толчком к видообразованию в органическом мире.

На биогенном этапе биосфера начинает оказывать мощное воздействие на структуру всей географической оболочки. Возникновение фотосинтезирующих растений коренным образом изменило состав атмосферы: снизилось содержание углекислого газа и появился свободный кислород. В свою очередь накопление кислорода в атмосфере вело к изменению характера живых организмов. Поскольку свободный кислород оказался сильнейшим ядом для не приспособленных к нему организмов, многие виды живых организмов вымерли. Наличие кислорода способствовало образованию озонового экрана на высоте 25-30 км, который поглощает коротковолновую часть ультрафиолетовой солнечной радиации, губительную для органической жизни.

Под влиянием живых организмов, которые испытывают все компоненты географической оболочки, меняются состав и свойства речных, озерных, морских и подземных вод; происходит образование и накопление осадочных пород, образующих верхний слой земной коры, накопление органогенных пород (угля, коралловых известняков, диатомитов, торфа); формируются физико-химические условия миграции элементов в ландшафтах (в местах гниения живых органических соединений образуется восстановительная среда с недостатком кислорода, а в зоне синтеза водных растений образуется окислительная среда с избытком кислорода), условия миграции элементов в земной коре, что в итоге определяет ее геохимический состав. По словам В.И. Вернадского, жизнь является великим постоянным и непрерывным нарушителем химической косности поверхности нашей планеты.

Географической оболочке свойственна выраженная зональность (см. § 10.1). О зональности добиогенной геосферы известно мало, очевидно, что зональные изменения ее в то время были связаны с изменениями климатических условий и коры выветривания. На биогенном этапе в зональности географической оболочки ведущую роль играют изменения живых организмов. Начало зарождения географической зональности современного типа относят к концу мелового периода (67 млн лет назад), когда появляются цветковые растения, птицы и набирают силу млекопитающие. Благодаря теплому и влажному климату пышные тропические леса распространились от экватора до высоких широт. Изменение очертаний материков на протяжении дальнейшей истории развития Земли приводило к изменению климатических условий, а соответственно и почвенно-растительного покрова, и животного мира. Постепенно усложнялись структура географических зон, видовой состав и организация биосферы.

В палеогене, неогене и плейстоцене происходило постепенное охлаждение земной поверхности; кроме того, суша расширилась и ее северные побережья в Евразии и Северной Америке продвигались в более высокие широты. В начале палеогена севернее экваториальных лесов появились сезонновлажные субэкваториальные леса, преимущественно листопадные, в Евразии они доходили до широт современных Парижа и Киева. В наше время леса такого типа встречаются лишь на полуостровах Индостан и Индокитай.

Последующее похолодание привело к развитию субтропических, а в конце палеогена (26 млн лет назад) и широколиственных лесов умеренного пояса. В настоящее время такие леса находятся гораздо южнее - в центре Западной Европы и на Дальнем Востоке. Субтропические леса отступили к югу. Более четко обособились природные зоны континентальных районов: степи, обрамленные на севере лесостепями, а на юге - саваннами, которые были распространены по всей Сахаре, на полуострове Сомали и на востоке Индостана.

В неогеновом периоде (25-1 млн лет назад) похолодание продолжалось. Считается, что на протяжении этого периода земная поверхность охладилась на 8 °С. Произошло дальнейшее усложнение зональной структуры: на равнинах северной части Евразии возникла зона смешанных, а затем и хвойных лесов, а более теплолюбивые лесные зоны сузились и сдвинулись к югу. В центральных частях континентальных районов возникли пустыни и полупустыни; на севере их обрамляли степи, на юге - саванны, а на востоке - редколесья и кустарники. В горах более отчетливо проявилась высотная зональность. К концу неогена произошли существенные изменения природы Земли: усилилась ледовитость Арктического бассейна, интенсивнее стали циклонические осадки в средних широтах Евразии, уменьшилась сухость климата в Северной Африке и Передней Азии. Продолжавшееся похолодание привело к оледенению в горах: Альпы и горы Северной Америки покрылись ледниками. Похолодание, особенно в высоких широтах, достигло критического рубежа.

Для большей части четвертичного периода (приблизительно 1 млн - 10 тыс. лет назад) характерны последние в истории Земли оледенения: температура была на 4-6 °С ниже современной. Там, где выпадало достаточное количество осадков в виде снега, ледники рождались и на равнинах, например в субполярных широтах. В этой обстановке холод как бы аккумулировался, поскольку отражательная способность снежной и ледниковой поверхностей достигает 80%. Вследствие этого ледник расширялся, образуя сплошной щит. Центр оледенения в Европе находился на Скандинавском полуострове, а в Северной Америке - на Баффиновой Земле и Лабрадоре.

В настоящее время установлено, что оледенения как бы пульсировали, прерываясь межледниковьями. Причины пульсаций все еще являются предметом споров ученых. Некоторые из них связывают похолодание с активизацией вулканической деятельности. Вулканическая пыль и пепел заметно усиливают рассеяние и отражение солнечной радиации. Так, при уменьшении суммарной солнечной радиации только на 1% вследствие запыленности атмосферы средняя планетарная температура воздуха должна понижаться на 5 °С. Этот эффект усиливает возрастание отражающей способности самой охваченной оледенением территории.

В период оледенения появилось несколько природных зон: сам ледник, который образовал полярные пояса (арктический и антарктический); зона тундры, возникшая вдоль края арктического пояса на вечной мерзлоте; тундростепи в континентальных более сухих районах; луга в приокеанических частях. Эти зоны отделялись от отступающей к югу тайги зоной лесотундры.

Антропогенный этап формирования географической оболочки назван так в связи с тем, что развитие природы на протяжении последних сот тысячелетий происходило в присутствии человека. Во второй половине четвертичного периода появились древнейшие люди архантропы, в частности питекантроп (в Юго-Восточной Азии). Архантропы существовали на Земле длительное время (600-350 тыс. лет назад). Однако антропогенный период в развитии географической оболочки наступил не сразу вслед за появлением человека. Сначала воздействие человека на географическую оболочку было ничтожным. Собирательство и охота с помощью дубинок или почти необработанного камня по своему воздействию на природу мало отличали древнейшего человека от животных. Древнейший человек не знал огня, не имел постоянных жилищ, не пользовался одеждой. Поэтому он почти полностью находился во власти природы, а его эволюционное развитие определялось в основном биологическими закономерностями.

На смену архантропам пришли палеоантропы - древние люди, просуществовавшие в общей сложности свыше 300 тыс. лет (350-38 тыс. лет назад). В это время первобытный человек овладел огнем, что окончательно отделило его от животного царства. Огонь стал средством охоты и защиты от хищников, изменил состав пищи, помог человеку в борьбе с холодом, что способствовало резкому расширению области его обитания. Палеоантропы стали широко использовать пещеры в качестве жилищ, им была известна одежда.

Примерно 38-40 тыс. лет назад палеоантропов вытеснили неоантропы, к которым относится современный человек Homo sapiens. Именно к этому времени и относят начало антропогенного периода. Создав мощные производительные силы, которые участвуют в глобальном масштабе во взаимодействии всех сфер Земли, человек придает целенаправленность процессу развития географической оболочки. Почувствовав свое могущество, человек на собственном опыте убедился, что его благополучие неразрывно связано с полнокровным развитием природы. Осознание этой истины знаменует начало нового этапа эволюции географической оболочки - этапа сознательного регулирования природных процессов, имеющего целью достижение гармоничного развития системы «природа - общество - человек».

Антропогенный этап

Биогенный этап

Добиогенный этап

2. Антропогенные изменения географической оболочки в современное время: формирование техносферы

Географическая оболочка Земли и входящая в нее ландшафтная сфера находятся в непрестанном изменении и развитии. Одной из важнейших причин этого развития Л.А. Григорьев считает процесс постоянного обмена веществом и энергией между компонентами географической оболочки, между географической оболочкой и внешним миром.

В развитии географической оболочки и ландшафтной сферы можно выделить три основных этапа.

I этап - абиогенный - период с момента образования земной поверхности до появления жизни. Он охватывает допалеозойское время в истории Земли (архейскую и протерозой скую эры). Это время становления географической оболочки и зарождения ее биологического фокуса – ландшафтной сферы. Состав отдельных компонентов географической оболочки и ее вертикальные границы были тогда иными, чем сейчас. Поэтому говорить о географической оболочке в современном ее понимании в то время неправомерно. Первоначально существовало лишь два исходных компонента - горные породы и солнечная радиация, взаимодействие между которыми проявлялось в поглощении и отдаче горными породами тепла, а также в некоторой аккумуляции солнечной радиации поверхностными и, возможно, более глубокими слоями. Важнейшую роль в жизни планеты сыграло появление атмосферы и воды.

В первичной атмосфере господствовали восстановительные условия, в ней преобладали водород и гелий при низком содержании кислорода и относительно высоком содержании углекислоты. Образование водяного пара могло осуществляться двумя путями: за счет выделения из недр и в результате реакции водорода с двуокисью углерода, который наряду с другими газами также выделялся из недр. С появлением воды (с низкой соленостью) возникают моря, океаны, внутренние водоемы, развиваются круговорот воды, эрозионно-аккумулятивные и другие процессы. Покров осадочных пород имел очень небольшую мощность. По-видимому, под действием солнечной радиации водяной пар разлагался на водород и кислород. Однако подавляющая часть кислорода тратилась на окисление аммиака в азот и воду и на окисление метана СН 4 в СО 2 и воду. Таким образом, свободного кислорода в атмосфере практически не было и окисления химических соединений не происходило.

Жизнь в наиболее примитивных ее проявлениях возникла, очевидно, еще в архее, но воздействие ее на ландшафтную сферу и тем более географическую оболочку в целом было ничтожным. Даже к концу добиогенного этапа на суше обитали лишь бактерии и водоросли, поэтому ландшафтной зональности в современном представлении тогда не было, как и не было развитого почвенного покрова.



II этап -биогенный - включает палеозой, мезозой и значительную часть кайнозоя (палеоген, неоген). Моря и сушу завоевывают растения и животные, состав и строение которых все более усложняется с течением времени. С начала палеозоя биологический компонент оказывает решающее влияние на состав и структуру географической оболочки. Благодаря живым организмам возросло содержание кислорода в атмосфере, более энергично пошел процесс накопления осадочных пород, сформировались почвы - этот важнейший компонент ландшафтной сферы. Жизнь, по словам В.И. Вернадского (1926), «теснейшим образом связана со строением земной коры, входит в ее механизм и в этом механизме исполняет величайшей важности функции, без которых он не мог бы существовать».

С появлением жизни как формы существования материи зародилась полноценная географическая оболочка – сложная, качественно своеобразная материальная система. Ландшафтная сфера в этот второй период приобрела зональную структуру, тип которой неоднократно менялся на протяжении палеозоя и мезозоя.

В развитии географической оболочки второго этапа можно выделить два наиболее крупных подэтапа - доантропогенный и антропогенный , качественные различия которых предопределяются воздействием разумного человека на природные процессы.

А) Доантропогенный подэтап . По современным представлениям жизнь возникла около 3 млрд. лет назад и в горных породах того возраста сохранились остатки примитивных бактерий. О появлении жизни в то время свидетельствует также наличие известняков, железистых кварцитов и других пород, возникновение которых связывают с жизнедеятельностью организмов.

Органическая жизнь первоначально, по-видимому, была сосредоточена в мелководной прибрежной, хорошо освещенной полосе морей и океанов. Уже в протерозое в водоемах и на суше значительное развитие получили бактерии, сине-зеленые и меньше красные водоросли, а к концу протерозоя сформировались все типы беспозвоночных животных. Появление жизни - крупнейший эволюционный скачок в развитии, планеты, когда организмы стали великим, постоянным и. непрерывным нарушителем химической косности нашей планеты. Они участвовали в образовании многих осадочных пород и руд, с их помощью атмосфера из восстановительной постепенно стала окислительной.

Для первой половины палеозоя в целом характерна псилофитная флора - травянистые или деревянистые растения, переходная группа между водорослями и папоротникообразными. В животном мире в кембрийское время господствовали археоциаты, появились трилобиты, древнейшие панцирные рыбы, в ордовике развивались кораллы, головоногие ортоцератиты, в силуре появились первые жители суши - скорпионы и многоножки. Большим разнообразием отличалась органическая жизнь девона и карбона. Широко развитые в девоне псилофиты к концу периода вымерли и уступили место древовидным хвощам, плаунам, папоротникам (архиоптерисовая флора), которые достигли расцвета в карбоне. Зеленые растения, обогащая, атмосферу свободным кислородом, создали благоприятную среду для быстрой эволюции животных. Вслед за пышным развитием архиоптерисовой флоры началось быстрое развитие земноводных и пресмыкающихся, представленных звероподобными рептилиями. В пермский период в результате большей сухости флора приобрела ксерофильный облик, господство начали завоевывать голосемянные. Богатый животный мир был представлен крупными фораминиферами, морскими ежами и лилиями, хрящевыми рыбами, земноводными и пресмыкающимися.

В мезозойскую эру появились первые млекопитающие, предки птиц (триас), в мелу началось обеднение голосемянных, появились и широко развились покрытосемянные. Непрерывное, поступательное развитие органической жизни, переход от одних форм к другим, от низших к высшим характерен и для кайнозойской эпохи.

Непрерывному изменению состава и структуры подверглась литогенная основа географической оболочки. Первоначально земная поверхность представляла сплошную геосинклиналь, а в дальнейшем соотношение площадей платформ и геосинклинальных областей менялось следующие образом по подсчетам М.С. Точилина (1960; Юренков, 1982; табл. 1).

Таблица 1 – Соотношение площадей платформ и геосинклинальных областей Земного шара

Одновременно литогенная основа пополнялась веществом за счет внедрения изверженных масс и поступления его из космического пространства; увеличивалась масса осадочных пород, происходили и другие изменения.

На протяжении геологической истории сильно менялось положение полюсов Земли. Согласно П.С. Хромову, в протерозое Северный полюс находился в центре Северной Америки, откуда мигрировал на юго-запад и в кембрии располагался в середине Тихого океана. Уже в палеозое полюс переместился на северо-запад и достиг в триасе побережья Охотского моря, затем начал смещаться к северо-востоку. В неогене он мигрировал по Северному Ледовитому океану в направлении к Гренландии и в антропогене занял современное положение.

Взаимодействие всех непрерывно, поступательно развивающихся компонентов географической оболочки предопределяло постоянное ее изменение во времени и пространстве как целостной материальной системы, естественно-историческое усложнение ее территориальной дифференциации. С полным основанием можно говорить о наличии природных зон в карбоне, перми и других периодах. Так, в пределах Евразии в среднем и верхнем карбоне существовали три климатические зоны с характерной для них растительностью. По данным Н.М. Страхова (1962; Юренков, 1982) неширокой полосой от Молого-Шекснинской низменности через Южный Урал, Тургай, к Заилийскому Алатау протягивалась засушливая; зона, которая сильно расширилась к перми; севернее ее располагалась умеренно влажная (тунгусская) зона с растительным покровом из древовидных плауновых, каламитов, а в перми к ним присоединились гинкговые; к югу от аридной зоны располагалась тропическая влажная зона с пышной вестфальской растительностью из крупных каламитов и кордаитов, лепидодендронов, сигиллярий, древовидных плаунов, папоротников, хвощей и др.

Зонально-провинциальные различия природы еще больше проявились в мезозойское время. Согласно А. А. Борисову (1965; Юренков, 1982), в пределах территории России на протяжении всей мезозойской эры существовали три климатические зоны. В триасе на севере Дальнего Востока выделялась субарктическая зона, северную половину европейской части и север Сибири занимала умеренно теплая континентальная, а на юго-западе располагалась тропическая зона, которая затем сменилась влажной субтропической. Эти же зоны, но несколько иного простирания, отмечались в юре и мелу. К концу мела произошла дифференциация субтропической зоны на влажные субтропики (современный Крым, Черное море, Кавказ, юг Каспия) и сухие (территория Средней Азии).

В палеогене происходила дальнейшая дифференциация природных условий. Юг Русской равнины занимала субтропическая (полтавская} зона с растительностью из вечнозеленых пальм, мирты, фикусов, лавров, дубов, древовидных папоротников, секвой, болотных кипарисов, широколиственных листопадных (тополь, грецкий орех и др.). К северу от широты Волгограда простиралась умеренная теплая тургайская зона с господством листопадных широколиственных древесных и кустарниковых пород с участием хвойных (ель, тис и др.) и мелколиственных (береза, крушина и др.) пород.

Как отмечают многие исследователи, динамичность всех природных процессов усиливалась с возрастом Земли, от одной геологической эпохи к другой. Наибольшей эволюционной изменчивостью обладают природные зоны, расположенные в более высоких широтах. Природные зоны более низких широт обнаруживают относительно большую устойчивость, более консервативны.

Интенсивные горообразовательные движения в неогене, резкое увеличение площади суши и сокращение морских бассейнов, быстрое смещение полюсов и другие факторы обусловили усиление континентальности климата, дальнейшую дифференциацию природных условий. С территории нынешней России отступила палеогеновая полтавская флора, а ее место заняла листопадная тургайская. В миоцене-плиоцене в Средней и Восточной Сибири формировались ядра новой фитогеографической области, где получили господство сосна, ель, пихта, лиственница. Усиление континентальности обусловило в Средней Азии смену лесных биоценозов степными и пустынными. С похолоданием климата хвойные леса из Средней Сибири продвинулись на север Восточно-Европейской равнины, на юге они сменились лиственными лесами. К плейстоцену тургайская флора почти полностью мигрировала в убежища, на территории Евразии существовали все природные зоны, за исключением зон арктических пустынь и тундровой, но очаги тундровой растительности на севере и в горах Сибири к этому времени уже существовали. Тундровая зона сформировалась в позднем плейстоцене (гляциоплейстоцене), современное свое положение она заняла в конце голоценового и поэтому является самой молодой из природных зон.

Наибольшей динамичностью всех природных процессов по сравнению с остальными периодами Земли характеризовалось четвертичное время. В период неоднократных плейстоценовых оледенений происходило сокращение площадей, занятых лесом, перед краем наступавших ледников формировалась своеобразная холодная «лесостепь» (перигляциальная зона), которая включала в себя группировки лесной, степной и элементы формирующейся тундровой растительности. Спускавшиеся горные ледники теснили книзу в предгорья лесную растительность, ее место занимали представители формирующихся альпийских комплексов. В межледниковые эпохи природные зоны и высотные пояса стремились занять свои прежние положения. Вместе с зональными видами растительного мира к северу продвигались и не свойственные этим зонам представители. Так, вследствие переселений в лесной и тундровой зонах в альпийском поясе гор появились степные представители - Центрально-якутские, Яно-Оймяконские, Колымские и другие луго-степи, сохранившиеся и до настоящего времени. Их существование здесь в настоящее время вполне соответствует современным экологическим особенностям этих территорий. Все эти перемещения способствовали перемешиванию различных видов растительного и животного мира, дальнейшему усложнению морфоструктуры географической оболочки.

Б) Антропогенный подэтап - III этап - отвечает четвертичному периоду (антропогену, или плейстоцену и голоцену).В это время географическая оболочка Земли становится местом обитания - географической средой - человека, ареной его хозяйственной деятельности. За сравнительно короткий промежуток времени географическая оболочка оказалась под сильнейшим воздействием человека. Особенно большие изменения, связанные с деятельностью человека, произошли в структуре и строении ландшафтной сферы. Девственный растительный покров многих географических зон нарушен человеком или полностью замещен культурной растительностью; вследствие распашки земель резко возросли эрозионные процессы; плотины электростанций изменили режим рек.

Современный облик ландшафтной сферы есть в значительной мере результат хозяйственной деятельности человека. Именно этот современный облик ландшафтной сферы, в сильной степени преоразованный человеком, и составляет объект исследований ландшафтоведческой науки.

В своей практической деятельности человек выходит далеко за пределы ландшафтной сферы, а отчасти переходит и за пределы географической оболочки. Однако преобразующее воздействие его пока ограничивается в основном рамками ландшафтной сферы.

С появлением человека разумного (Homo sapiens) географическая оболочка вступила в качественно новый этап своего развития, в котором принято выделять четыре основных периода:

1)древнейший (верхний палеолит) - 40-10 тыс. лет назад;

2)древний (мезолит, неолит, бронзовый век) - 10-3 тыс. лет. назад;

3)новый (железный век, историческое -время) - 3 тыс.- 30 лет назад;

4)новейший - с середины 40-х годов XX в. до наших дней.

Первые периоды антропогенного этапа характеризовались сравнительно незначительным воздействием человечества на географическую оболочку. В древнейший период это воздействие проявлялось главным образом в постепенном освоении новых территорий, в количественном изменении некоторых видов растительного и животного мира. Более существенное и разнообразное влияние оказывало человечество на природные процессы во второй, древний период в связи с возникновением скотоводства и земледелия, с активным вмешательством человека в такие компоненты природной среды, как почва, растительный покров. Первыми антропогенными урочищами, созданными человеком в этот период, стали курганы - могильники, сохранившиеся до наших дней. Обработка почвы, пастьба домашнего скота явились причиной.усиления эрозионных процессов, качественного изменения растительных сообществ, смены одних ценозов другими.

Вместе с тем нельзя забывать о поступательном общенаправленном развитии географической оболочки и недооценивать естественно-исторические процессы этого времени.

В послеледниковое время (голоценовое межледниковье) (с 10300 лет до нынешнего этапа) также были значительные колебания климатических условий, особенно в высоких широтах. Это подтверждается данными палинологических анализов отложений озер и болот (Нейштадт, 1957; Еловичева, 2001). Так, в отложениях древнего голоцена (арктический и субарктический периоды - 14000-10300 лет назад) на территории Беларуси отмечалось последовательное преобладание пыльцы сосны и березы при большой роли трав (раунисский интерстадиал), березы с участием сосны и ели, трав (ранний дриасовый - I стадиал), сосны и березы, трав (беллингский интерстадиал), сосны с участием березы и трав (средний дриасовый - II стадиал), ели (30-90%) с сосной и травами (аллередский интерстадиал), сосны и березы с травами (поздний дриасовый – III стадиал) при отсутствии пыльцы широколиственных пород. В раннем голоцене (пребореальный и бореальный периоды) климат стал теплее с разной степенью увлажненности. В пребореале-1 (10300-10000 лет назад) господствовала сосна, пребореале-2 (10300-9200 лет назад) - ель и сосна, бореале-1 (9200-8800 лет назад) - береза, бореале-2 (8800-8400 лет назад) - сосна с участием термофильных пород, бореале-3 (8400-8000 лет назад) - сосна и береза с елью. Средний голоцен объединяет атлантический и суббореальный периоды (8000-2500 лет назад. В атлантике (8000-5000 лет назад) отмечается максимум распространения пыльцы широколиственных пород (до 40%), ольхи и орешника. В суббореале содержание термофильных пород существенно снижается, для суббореала-1 (5000-4000 лет назад) характерен максимум сосны, а суббореалу-2 (4000-2500 лет назад) свойственны максимумы ели и сосны. В позднем голоцене (субатлантический период - 2500 лет назад - современность) растительный покров слагали хвойно-лиственные породы, наряду с участием представителей синантропической растительности. В отложениях субатлантики-1 (2500-1600 лет назад) отмечалось максимальное содержание пыльцы сосны, субатлантики-2 (1600-750 лет назад) - ели и сосны, а субатлантики-3 (750 лет назад - современность) - вновь сосны, а количество пыльцы широколиственных пород в отложениях снизилось до 5%.

Смена лесов (сукцессия растительности) в поозерском позднеледниковье и голоцене связана с изменением климатических условий, а в субатлантический период на естественный ход природных процессов уже накладываются и изменения, вызванные хозяйственной деятельностью человека. В постоптимальное время голоцена (суббореальный и субатлантический периоды) явно выражена тенденция к общему похолоданию климата на фоне кратковременных климатических колебаний в сторону некоторого его потепления и некоторому усилению жизнедеятельности широколиственных древесных пород.

Согласно В.Н. Сукачеву (1938), ельники с участием дуба и других широколиственных пород - это одна из стадий смены широколиственных лесов еловыми, но это процесс медленно идущий, и в победе ели над дубом играют роль не только ее теневыносливость, но и другие свойства, в частности влияние на почву, которое проявляется в усилении подзолистого процесса.

В.Н. Сукачёв совершенно правильно указывал, что ельники с примесью дуба и других широколиственных пород могут оставаться в течение нескольких поколений без резких изменений и даже с временными изменениями в силу случайных причин (рубка, действие вредителей, пожары) в сторону господства дуба с его спутниками. Кроме того, на фоне общего похолодания и увеличения влажности после атлантического времени отмечались и кратковременные климатические колебания в сторону некоторого потепления. Временные потепления способствовали усилению жизнедеятельности широколиственных древесных пород.

Колебания климата в течение послеледникового времени - одна из причин изменений пространственных положений ПТК. Согласно М.И. Нейштадту (1957), М.И. Лопатникову, А.И. Попову (1959), в голоцене подвергались изменениям границы природных зон.

Наиболее значительные изменения отмечались в высоких широтах, т. е. проявилась одна из важнейших закономерностей географической оболочки - большая динамичность природных условий в высоких широтах и относительный консерватизм - в низких. Как установлено, в атлантическое время лесная зона занимала нынешнюю территорию лесотундры и часть тундровой зоны, местами выходила к морям Северного Ледовитого океана. Современное положение природные зоны заняли только в позднем голоцене. Изменения климатических условий, особенно увлажненности, в последние десятилетия повлекли за собой изменение морфоструктуры ПТК, которое наиболее ощутимо сказалось в пределах территорий с близким от поверхности залеганием уровня грунтовых вод. Так, по П.С. Погребняку (1967), за истекшее сорокалетие в пределах Украинского Полесья влажные и сырые местообитания осушились примерно на один гидротоп: т. е. черничники-долгомошники превратились в черничники-зеленомошники, последние - в брусничники, а некоторые брусничники - в лишайниковые боры.