Эмулятор raspberry pi для виртуальной машины. Raspberry Pi — эмулятор ретро игр. Что нам понадобится

Данное направление образовалось на базе утверждения что интеллект человека может быть детально описан и впоследствии успешно имитироваться машиной. Гёте Фауст Идея о том что не человек мог бы выполнять за человека трудную работу возникла ещё в каменном веке когда человек одомашнил собаку. Что в этом создании было самое ценное это то что мы сейчас называем искусственным интеллектом. Для него легализуется идея усиленной борьбы со злом переступающая границы религиозного закона...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

УЧЕБНО-НАУЧНЫЙ ЦЕНТР

РЕФЕРАТ

по истории и философии науки

на тему:

ИСТОРИЯ РАЗВИТИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Выполнил:

Пелеванюк И.С.

Дубна

2014

Введение 3

До возникновения науки 4

Самые первые идеи 4

Три закона робототехники 5

Первые научные шаги 7

Тест Тьюринга 7

Дармутский семинар 8

1956-1960: время больших надежд 9

1970-е года: Системы основанные на знаниях 10

Борьба на шахматной доске 11

Использование искусственного интеллекта в коммерческих целях 15

Смена парадигмы 16

Data mining 16

Заключение 21

Список литературы 22

Введение

Термин интеллект (лат. intеllеctus) означает ум, рассудок, способность мышления и рационального познания. Обычно, под этим подразумевается способность приобретать, запоминать, применять и преобразовывать знания для решения каких-то задач. Благодаря этим качествам человеческий мозг способен решать разнообразные задачи. В том числе те, для которых нет заранее известных методов решения.

Термин искусственный интеллект возник сравнительно недавно, однако уже сейчас практически невозможно представить себе мир без него. Чаще всего, люди не замечают его присутствия, но если бы, вдруг, его не стало, то это коренным образом отразилось бы на нашей жизни. Сферы, в которых используются технологии искусственного интеллекта, постоянно пополняются: когда-то это были программы для игры в шахматы, потом - роботы пылесосы, сейчас алгоритмы способны сами проводить торги на биржах.

Данное направление образовалось на базе утверждения, что интеллект человека может быть детально описан и, впоследствии, успешно имитироваться машиной. Искусственный интеллект являлся причиной огромного оптимизма, однако вскоре показал ошеломляющую сложность реализации.

Основные направления развития искусственного интеллекта включают рассуждения, знания, планирование, обучение, языковую коммуникацию, восприятие и способность двигаться и манипулировать объектами. Универсальный искусственный интеллект(или "сильный ИИ ") всё ещё в планах на будущее. В настоящее время популярные подходы включают статистические методы, вычислительного интеллекта и традиционной символической ИИ. Существует огромное количество инструментов, использующих искусственный интеллект: разные версии поисковых алгоритмов, алгоритмы математической оптимизации, логики, методы, основанные на вероятности и многие другие.

В данном реферате я попытался собрать наиболее важные, с моей точки зрения, события, оказавшие влияние на развитие технологии и теории искусственного интеллекта, основные достижения и предпосылки.

До возникновения науки

Самые первые идеи

“Нам говорят «безумец» и «фантаст»,

Но, выйдя из зависимости грустной,

С годами мозг мыслителя искусный

Мыслителя искусственно создаст.”

Гёте, “Фауст”

Идея о том, что не человек мог бы выполнять за человека трудную работу, возникла ещё в каменном веке, когда человек одомашнил собаку. Собака идеально подходила на роль сторожа и выполняла эту задачу на много лучше чем человек. Конечно, этот пример нельзя рассматривать как демонстрацию использования искусственного интеллекта, ведь собака - это живое существо: она уже наделена возможностью распознавания образов, ориентирования в пространстве, а так же предрасположена к некоторому базовому обучению в целях распознавания “свой/чужой”. Тем не менее, это показывает направление мысли человека.

Другим примером является миф о Талосе. Талос, по преданию, был огромным бронзовым витязем, которого Зевс даровал Европе для защиты острова Крит. Его задачей было не допускать чужаков на остров. Если они приближались, Талос закидывал их камнями, если им удавалось высадиться, Талос раскалял себя в огне и сжигал врагов в своих объятиях.

Чем же Талос так примечателен? Созданный из самого прочного на тот момент материала, способный определять кто чужак, практически неуязвимый, без необходимости отдыхать. Так представлялись древним грекам создания богов. Что в этом создании было самое ценное - это то, что мы сейчас называем искусственным интеллектом.

Другой интересный пример можно взять из иудейских преданий - это легенды о големах. Голем — глиняное существо человеческого вида. Их, по легенде, могли создавать раввины для защиты еврейского народа. В Праге возникла еврейская народная легенда о големе, который был создан главным раввином Праги для исполнения разных «чёрных» работ или просто трудных поручений. Известны и другие големы, созданные по народному преданию разными авторитетными раввинами — новаторами религиозной мысли.

В этой легенде народная фантазия оправдывает сопротивление социальному злу насилием, совершённым големом. Для него легализуется идея усиленной борьбы со злом, переступающая границы религиозного закона; недаром голем по легендам может превысить свои полномочия, заявляя свою волю, противоречащую воле его создателя: голем способен делать то, что по закону преступно для человека.

И в заключение, роман “Франкенштейн или современный Прометей”, написанный Мэри Шэлли. Его можно назвать родоначальником научно-фантастической литературы. В нём описывается жизнь и труды доктора Виктора Франкенштейна, который оживил существо, созданное из частей тел умерших людей. Однако, увидев, что оно оказалось безобразным и чудовищным, доктор отрекается от своего создания и покидает город, в котором жил. Безымянное существо, которое люди ненавидят за внешний вид, вскоре начинает преследовать своего создателя.

И здесь опять же поднимается вопрос об ответственности, которую человек несёт за своих созданий. В начале XIX века, роман поднял несколько вопросов касательно пары творца и творения. Насколько это было этически правильно, создавать подобное творение? Кто несет ответственность за его поступки? Вопросы, тесно связанные с идеями об искусственном интеллекте.

Подобных примеров, которые неким образом связанны с вопросами создания искусственного интеллекта, много. Это кажется людям святым граалем, способным решить многие их проблемы и освободить от любых проявлений недостатка и неравенства.

Три закона робототехники

Начиная с Франкенштейна, искусственный интеллект появляется в литературе постоянно. Идея о нём стала плодотворной почвой для размышлений писателей и философов. Один из них, Айзек Азимов, навсегда запомнится нам. В 1942 году, в своём романе “Хоровод”, он описал три закона, которым должны следовать роботы:

  1. Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинён вред.
  2. Робот должен повиноваться всем приказам, которые даёт человек, кроме тех случаев, когда эти приказы противоречат Первому Закону.
  3. Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому и Второму Законам.

До Айзека, в рассказах о искусственном интеллекте и о роботах, сохранялся дух романа Мэри Шэлли о Франкенштейне. Как говорил сам Айзек, эта проблема стала одной из самых популярных в мире научной фантастики в 1920—1930-х годах, когда писалось множество рассказов, темой которых являлись роботы, которые восставали и уничтожали людей.

Но не все фантасты, конечно, следовали такому шаблону. В 1938 году, к примеру, Лестера дель Рея написал рассказ «Хелен О’Лой» — рассказ о женщине-роботе, полюбившей своего создателя и ставшей для него, в последствии, идеальной женой. Что, кстати, очень сильно напоминает историю о Пигмалионе. Пигмалион вырезал из слоновой кости статую девушки настолько красивой, что сам влюбился в неё. Тронутая такой любовью Афродита оживила статую, которая стала женой Пигмалиона.

По сути, возникновение Трёх Законов происходило постепенно. В двух самых первых рассказах о роботах: «Робби» (1940) и «Логика» (1941) не было явного описания законов. Но в них уже подразумевалось, что у роботов должны быть некоторые внутренние ограничения. В следующем рассказе: «Лжец» (1941) впервые прозвучал Первый Закон. А полностью все три закона появились только в «Хороводе» (1942).

Не смотря на то, что сегодня роботика развивается как никогда, исследователи из области искусственного интеллекта не придают такого большого значения законам робототехники. Ведь законы, по сути, совпадают с основными принципами человечности. Однако, чем сложнее становятся роботы, тем очевиднее необходимость в создании некоторых базовых принципов и мер безопасности для них.

Есть даже утверждения, что Законы вряд ли будут полностью реализованы во всех роботах, ведь всегда найдутся те, кто захочет использовать роботов в целях разрушения и убийства. Специалист по научной фантастике Роберт Сойер собрал эти утверждения в одно:

“Развитие ИИ — это бизнес, а бизнес, как известно, не заинтересован в развитии коренных мер безопасности — особенно философских. Вот несколько примеров: табачная индустрия, автомобильная промышленность, ядерная промышленность. Ни для одной из них изначально не было сказано, что серьёзные меры безопасности необходимы, и все они препятствовали внешне налагаемым ограничениям, и ни одна из них не приняла абсолютный эдикт против причинения вреда людям.”

Первые научные шаги

Историю развития искусственного интеллекта как науки можно начать прослеживать с ранних философских работ, таких как: "Рассуждение о методе" (Рене Декарт, 1637), "Человеческая природа" (Томаса Гоббс, 1640). Если смотреть на развитие ещё и с технической точки зрения, то можно упомянуть про первую механическую цифровую вычислительную машину, которая появилась ещё раньше: в 1623 , благодаря стараниям Вильгельма Шикарда. Однако, мне бы хотелось обратить внимание на 1950, когда Алан Тьюринг в своей статье “Вычислительные машины и разум” задался целью определить, способна ли машина мыслить.

Тест Тьюринга

Человек общается с другим человеком и с компьютерной программой. Человек может задавать вопросы посредством терминала, его задача определить, где программа и где человек. Цель программы - ввести человека в заблуждение и заставить сделать неправильный выбор. По условиям, переписка должна была производиться через фиксированные промежутки времени, потому что тогда ещё компьютеры были медленными и это позволяло сразу определять где программа. Сейчас это правило необходимо, потому что компьютер может ответить на много быстрее, чем человек.

На самом деле существует несколько вариантов формулировки. В одном из них, к примеру, компьютер был должен убедить комиссию из нескольких человек, что они общаются с другим человеком. А в одном из самых первых вариантов, Тьюринг предлагает участнику эксперимента сыграть в шахматы с человеком и с компьютером, а потом определить, кто из них кто. На самом деле, к моменту написания статьи, Алан Тьюринг уже около 10 лет занимался вопросами искусственного интеллекта.

В последующей истории теста Тьринга можно выделить несколько ключевых событий. Но главное произошло в 1966 году, Джозеф Вайценбаум создал программу Элиза, которая могла пародировать разговор с психотерапевтом. Это позволяло ей в условиях неопределённости отвечать вопросом на вопрос. Вот пример того, какой разговор мог с ней получиться:

Х: Кто ваш любимый композитор?

Elisa: А вас интересует эта тема? (Отвечает вопросом на вопрос)

Х: У меня болит голова.

Elisa: Почему вы говорите, что у вас болит голова? (Условие неопределённости)

Х: Мой отец меня ненавидит

Elisa: Кто ещё из семьи вас ненавидит? (реагирует на ключевое слово “отец”)

Элиза навсегда останется важным этапом в развитии искусственного интеллекта. Это была первая программа, которая вышла за рамки парадигмы общения Человек/Машина и смогла создать имитацию общения Человек/Человек.

Дармутский семинар

Благодаря бурному скачку в скорости работы компьютеров исследователи стали полагать, что благодаря компьютеру создать искусственный интеллект не составит большого труда. Дело в том, что в то время существовало два направления исследований: нейрокибернетика и, чуть позднее, кибернетика “чёрного ящика”.

В основу нейрокибернетики лёг принцип, что единственный объект способный мыслить - это человек, значит мыслящее устройство должно моделировать его структуру. Учёные пытались создавать элементы, которые бы работали как нейроны головного мозга. Благодаря этому, в конце 50-х годов, появились первые нейронные сети. Их создали двое американских учёных: Розен-блатт и П.Мак-Каллок. Они попытались создать систему, которая могла бы моделировать работу человеческого глаза. Своё устройство они назвали перцептрон. Оно могло распознавать рукописные буквы. Сейчас, основной областью применения нейросетей является распознавание образов.

В основу кибернетики “чёрного ящика” лёг принцип, который говорил, что неважно, как устроена внутри мыслящая машина, главное чтобы она реагировала на некий набор входных данных так же, как человек. Исследователи, работающие в этой области стали создавать собственные модели. Оказалась, что ни одна из существующих наук: психология, философия, нейрофизиология, лингвистика, не смогли пролить свет на алгоритм работы мозга.

Развитие кибернетики “чёрного ящика” началось с 1956 года, когда прошёл Дармутский семинар, одним из основных организаторов которого являлся Джон Маккарти. К тому времени стало ясно, что для реализации принципов нейрокибернетики не хватает, как теоретических знаний, так и технической базы. Но исследователи в области информатики верили, что благодаря совместным усилиям удастся развить новый подход к созданию искусственного интеллекта. Усилиями одних из самых выдающихся учёных из области информатики был организован семинар под названием: Дармутский летний проект исследования искусственного интеллекта. В нём приняли участие 10 человек, многие из-которых были, в будущем, награждены премией Тьюринга - самой почётной премией в области информатики. Далее приведено вступительное утверждение:

Мы предлагаем исследование искусственного интеллекта сроком в 2 месяца с участием 10 человек летом 1956 года в Дартмутском колледже, Гановер, Нью–Гемпшир.

Исследование основано на предположении, что всякий аспект обучения или любое другое свойство интеллекта может в принципе быть столь точно описано, что машина сможет его симулировать. Мы попытаемся понять, как обучить машины использовать естественные языки, формировать абстракции и концепции, решать задачи, сейчас подвластные только людям, и улучшать самих себя.

Мы считаем, что существенное продвижение в одной или более из этих проблем вполне возможно, если специально подобранная группа учёных будет работать над этим в течение лета. ”

Это была, пожалуй, самая амбициозная грантозаявка в истории. Именно на этой конференции официально утвердилась новая область науки - “Искусственный интеллект”. И может быть, ничего конкретного не было открыто или разработано, но благодаря этому мероприятию одни из самых выдающихся исследователей познакомились друг с другом и начали двигаться в одном направлении.

1956-1960: время больших надежд

В те времена, казалось, что решение уже очень близко и не смотря на все трудности, человечество вскоре сможет создать полноценный искусственный интеллект, способный приносить реальную пользу. Появлялись программы способные создавать что-то интеллектуальное. Классическим примером является программа Logic theorist.

В 1913 году Уайтхед и Бертран Рассел опубликовали свой труд “Принципы математики”. Их целью было показать, что при помощи минимального набора логических средств, таких как аксиомы и правила вывода, можно воссоздать все математические истины. Эта работа считается наиболее одной из самых влиятельных из когда либо написанных книг после Organon Аристотеля.

Программа Logic Theorist смогла сама воссоздать большую часть “Principia Mathematica”. Причём, кое-где даже изящнее, чем это получилось у авторов.

Logic Theorist ввела несколько идей, которые стали центральными в исследованиях искусственного интллекта:

1. Рассуждение, как способ поиска. Фактически, программа шла по дереву поиска. Корнем дерева были начальные утверждения. Возникновение каждой ветви базировалась на правилах логики. В самой верхушке дерева возникал результат - то, что программа смогла доказать. Путь от корневых утверждений к целевым назывался доказательством.

2. Эвристика. Авторы программы поняли, что дерево будет рости экспоненциально и им потребуется каким-то образом, “на глаз”, его обрезать. Правила, в соответствии с которыми они избавлялись от лишних ветвей они назвали “эвристическими”, используя термин введённый Дьёрдь По́йа в своей книге “Как решать задачу”. Эвристика стала важной составляющей исследований искусственного интеллекта. Она остаётся важным методом решения сложных комбинаторных задач, так называемых “комбинароных взрывов”(пример: задача коммивояжера, перебор шахматных ходов).

3. Обработка структуры “Список”. Чтобы реализовать программу на компьютере был создан язык программирования IPL(Information Processing Language), который использовал такую же форму списков, которую в будущем использовал Джон Маккарти при создании языка Лисп(за него он получил премию Тьюринга), который до сих пор используется исследователями искусственного интеллекта.

1970-е года: Системы основанные на знаниях

Системы основанные на знаниях - это компьютерные программы, которые используют базы знаний, чтобы решать сложные задачи. Сами системы подразделяются ещё на несколько классов. Объединяет их то, что все они пытаются представлять знания через такие средства, как онтологии и правила, нежели чем просто программный код. Они всегда состоят, как минимум, из одной подсистемы, а чаще, из двух сразу: базы знаний и машины вывода. База знаний содержит факты о мире. Машина вывода содержит логические правила, которые, обычно, представлены в виде правил ЕСЛИ-ТО. Системы основанные на знаниях впервые были созданы исследователями искусственного интеллекта.

Первой работающей системой основанной на знаниях была программа Mycin. Это программа была создана для диагностики опасных бактерий и выбора наиболее правильного лечения для пациента. Программа оперировала 600 правил, задавала врачу множество вопросов с ответом “да/нет” и выдавала список возможных бактерий, отсортированный в зависимости от вероятности, так же предоставляла доверительный интервал и могла порекомендовать курс лечения.

В результате исследований в Стэнфорде обнаружилось, то Mycin предоставляет приемлемый курс лечения в 69% случав, что лучше чем у эспертов, которых оценивали по тем же критериям. Данное исследование часто цитируют в целях демонстрации несогласия между врачами-экспертами и системой, если не существует стандарта для “правильного” лечения.

К сожалению, Mycin не так и не была апробирована на практике. Были подняты этические и правовые вопросы, связанные с использованием подобных программ. Было не ясно, кто должен нести ответственность, если рекомендация программы оказалась неправильной. Другой проблемой стало технологическое ограничение. В те времена не было персональных компьютеров, один сеанс занимал более получаса, и это было недопустимо для занятого врача.

Основным достижением программы была то, что мир увидел мощь систем основанных на знаниях, и мощь искусственного интеллекта в целом. Позже, в 1980-х, стали появляться другие программы использующие такой же подход. Для упрощения их создания была создана оболочка E-Mycin, которая позволяла создавать новые экспертные системы с меньшими усилиями. Непредвиденной трудностью, с которой столкнулись разработчики, оказалось извлечение знаний из опыта экспертов, по вполне понятным причинам.

Важно упомянуть, что именно в это время начал советский учёный Дмитрий Александрович Поспелов начал свою работу в области искусственного интеллекта

Борьба на шахматной доске

Отдельно можно рассматривать историю противостояния человека и искусственного интеллекта на шахматной доске. Эта история началось очень давно: когда в 1769 году, в Вене, Вольфганг фон Кемпеленг создал шахматный автомат. Это был большой деревянный ящик, на крыше которого находилась шахматная доска, и за которым стоял восковой турок в соответствующем наряде (из-за этого машину, иногда, коротко называют “Турок”). Перед началом представления дверцы ящика открывались, и зрители могли видеть множество деталей некоего механизма. Затем дверцы закрывали, и заводили машину специальным ключом, как часы. После этого желающий поиграть подходил и делал ходы.

Данная машина имела огромный успех и успела объездить всю Европу, проиграв всего несколько партий сильным шахматистам. В действительности, внутри ящика сидел человек, который при помощи системы зеркал и механизмов мог наблюдать за состоянием партии и при помощи системы рычагов управлять рукой “Турка”. И это была не последняя машина, внутри которой, на самом деле, скрывался живой шахматист. Подобные машины имели успех вплоть до начала двадцатого века.

С появлением компьютеров возможность создать искусственного шахматиста стала осязаемой. Аланом Тьюрингом была разработана первая программа способная играть в шахматы, однако из-за технических ограничений на то, чтобы сделать один ход требовалось около получаса. Сохранилась даже запись игры программы с Аликом Глени, коллегой Тьюринга, которую программа проиграла.

Идея создания подобных программ на базе компьютеров вызвала резонанс в научном мире. Задавалось множество вопросов. Прекрасным примером является статья: “Применение цифровых компьютеры для игр” (Digital Computers applied to Games). В ней поднимается 6 вопросов:

1. Можно ли создать машину, которая могла бы следовать правилам шахмат, могла бы выдавать случайный корректный ход, либо проверять, является ли ход корректным?

2. Можно ли создать машину, способную решать шахматные задачи? К примеру говорить, как поставить мат за три хода.

3. Можно ли создать машину, которая вела бы хорошую игру? Которая, к примеру, столкнувшись с некой обычной расстановкой фигур могла бы после двух-трёх минут вычислений выдать хороший корректный ход.

4. Можно ли создать машину, которая играя в шахматы учится и улучшает свою игру раз за разом?

Этот вопрос поднимает ещё два, которые, скорее всего, уже вертятся на языке у читателя:

5. Можно ли создать машину, которая способна отвечать на поставленный вопрос таким образом, чтобы нельзя было отличить её ответ, от ответа человека.

6.Можно ли создать машину, которая чувствовала как вы или я?

В статье основной упор делался на вопрос номер 3. На вопросы 1 и 2 ответ строго положительный. Ответ на вопрос 3 связан с использованием более сложные алгоритмы. По поводу вопроса 4 и 5 автор говорит, что не видит убедительных аргументов опровергающих подобную возможность. А на вопрос 6: “Я никогда не узнаю даже того, чувствуете ли вы всё так же как и я”.

Пусть подобные исследования сами по себе, быть может, и не имели большого практического интереса, однако они были очень интересны теоретически, и была надежда, что решение этих задач станут толчком к решению других задач подобной природы и большего значения.

Умение играть в шахматы издавна было отнесено к стандартным тестовым задачам, демонстрирующим возможности искусственного интеллекта справляться с заданием не с позиций «грубой силы», что в данном контексте понимается как применение тотального перебора возможных ходов, а с помощью… «чего-то такого», как выразился однажды один из пионеров в области разработки шахматных программ Михаил Ботвинник. В своё время ему удалось «пробить» официальное финансирование работ над проектом «искусственного шахматного мастера» — программного комплекса «ПИОНЕР», который создавался под его руководством во Всесоюзном НИИ электроэнергетики. О возможностях применения базовых принципов «ПИОНЕРА» для решения задач оптимизации управления в народном хозяйстве Ботвинник неоднократно докладывал в президиум АН СССР.

Базовой идеей, на которой основывал свою разработку экс-чемпион мира, он сам сформулировал в одном из своих интервью 1975 года: «Уже не один десяток лет я работаю над проблемой распознавания мышления шахматного мастера: как он находит ход без полного перебора? И сейчас можно утверждать, что этот метод в основном раскрыт... Три основных этапа создания программы: машина должна уметь находить траекторию передвижения фигуры, потом она должна «научиться» формировать зону игры, зону местного боя на шахматной доске и уметь формировать совокупность этих зон. Первая часть работы выполнена давно. Сейчас закончена подпрограмма формирования зоны. В ближайшие дни начнётся её отладка. Если она пройдёт успешно, будет полная уверенность, что удастся и третий этап и машина начнёт играть».

Проект «ПИОНЕР» остался незавершённым. Ботвинник работал над ним с 1958 по 1995 год — и за это время сумел построить алгоритмическую модель шахматной игры, основанную на поиске «дерева вариантов» и последовательного достижения «неточных целей», в качестве которых выступал выигрыш материала.

В 1974 году советская компьютерная программа Каисса выиграла Первый Всемирный Компьютерный Шахматный Чемпионат, победив во всех четырёх партиях другие шахматные автоматы, играя, по словам шахматистов, на уровне третьего разряда. Советские учёные ввели множество новшеств для шахматных автоматов: использование дебютной книги, позволяющей избежать расчёта ходов в самом начале игры, а также особую структуру данных: битборд, которая до сих пор используется в шахматных автоматах.

Возник вопрос, а сможет ли программа обыграть человека. В 1968 году шахматист Дэвид Леви заключил пари на 1250 фунтов стерлингов, что в следующие 10 лет ни одна машина не сможет его обыграть. В 1977 году он провёл партию с Каиссой и выиграл, после чего, турнир продолжать не стали. В 1978 году он выиграл партию у Chess4.7 - лучшей шахматной программы на то время, после чего сознался, что осталось не так много времени до того момента, когда программы смогут побеждать титулованных шахматистов.

Следует отдельно отметить партии между человеком и компьютером. Самой первой стала упомянутая ранее партия Алика Глени и программы Тьюринга. Следующим этапом стало создание программы в Лос-Аламосе в 1952 году. Она играла на доске 6х6(без слонов). Тест был проведён в два этапа. Первый этап - игра с сильным шахматистом, в результате которого, через 10 часов игры победил человек. Вторым этапом стала игра против девушки, которую незадолго до теста научили играть в шахматы. Результатом стала победа программы на 23-м ходу, что являлось несомненным достижением на тот момент.

Лишь в 1989 году программе Deep Thought удалось выиграть у международного гроссмейстера: Бента Ларсена. В том же году состоялся матч этой же программы с Гарри Каспаровым, который был легко выигран Каспаровым. После это матча он заявил:

Если компьютер сможет превзойти в шахматах лучшего из лучших, это будет означать, что ЭВМ в состоянии сочинять самую лучшую музыку, писать самые лучшие книги. Не могу в это поверить. Если будет создан компьютер с рейтингом 2800, то есть равным моему, я сам сочту своим долгом вызвать его на матч, чтобы защитить человеческую расу.

В 1996 году компьютер Deep Blue проиграл турнир Каспарову, но впервые в истории выиграл партию у чемпиона мира. И лишь в 1997 году компьютер впервые в истории выиграл турнир у чемпиона мира со счётом 3,5:2,5.

После матчей Каспарова многие руководители FIDE неоднократно высказывали мысли о том, что проводить смешанные встречи (человек против компьютерной программы) по многим причинам нецелесообразно. Поддерживая эту позицию, Гарри Каспаров пояснял: « Да, компьютер не знает, что такое выигрыш или проигрыш. А как это для меня?.. Как я буду относиться к игре после бессонной ночи, после грубых ошибок в игре? Это всё эмоции. Они ложатся огромным бременем на человека-игрока, и самое неприятное, что вы ведь понимаете: ваш оппонент не подвержен ни усталости, ни любым другим эмоциям ».

И если уже сейчас в шахматной борьбе перевес на стороне компьютеров, то в таких состязаниях как игра го компьютер подходит только для игры с новичками либо с игроками среднего уровня. Причина в том, что в го затруднена оценка состояния доски: один ход может сделать из однозначно проигрышной позиции, выигрышную. Дополнительно к этому полный перебор практически не возможен, ибо без использования эвристического подхода полный перебор первых четырёх ходов(два с одной стороны и два с другой) может потребовать оценки почти 17 млд возможных вариантов расклада.

Подобный интерес может представлять игра в покер. В ней трудность заключается в том, что состояние не является полностью обозреваемым, в отличие от го и шахмат, где оба игрока видят всю доску. В покере возможна ситуация, когда противник говорит пас и не показывает свои карты, что может затруднить процесс анализа.

В любом случае, интеллектуальные игры важны для разработчиков искусственного интеллекта, как дрозофилы для генетиков. Это удобное поле для испытаний, поле для исследований, как теоретических, так и практических. Это так же показатель развития науки об искусственном интеллекте.

Использование искусственного интеллекта в коммерческих целях

В 80-е годы, вдохновлённые достижениями искусственного интеллекта, многие компании решили попробовать использовать новые технологии. Однако, только самые крупные компании могли позволить себе подобные экспериментальные шаги.

Одной из самых первых компаний, которые смогли адаптировать технологии искусственного интеллекта, была компания DEC(Digital Equipment Corp). Она смогла внедрить экспертную систему XSEL, которая помогала составлять конфигурацию оборудования и подбирать альтернативы для клиентов. В итоге, трёхчасовая задача сократилась до 15 минут, причём, количество ошибок сократилось с 30% до 1%. По словам представителей компании, система XSEL позволяла зарабатывать 70 миллионов долларов.

American Express использовали экспертную систему для принятия решения о том выдавать ли кредит клиенту или нет. Эта система на одну треть чаще предлагала выдавать кредит, чем это делали эксперты. Говорят, она зарабатывала 27 миллионов долларов в год.

Выигрыш, который давали интеллектуальные системы зачастую оказывался ошеломляющим. Он был подобен переходу от передвижения ходьбой, к передвижению на автомобиле, или от передвижения на автомобиле, к перелёту на самолёте.

Однако не всё было так просто с интеграцией искусственного интеллекта. Во-первых, не каждую задачу можно было формализовать до того уровня, на каком бы с ней смог справиться искусственный интеллект. Во-вторых, сама разработка была весьма дорогим удовольствием. В-третьих, системы были новы, люди не привыкли пользоваться компьютерами. Некоторые относились к ним скептически, а некоторые даже враждебно.

Интересным примером является компания DuPont, она смогла потратить 10000$ и один месяц, чтобы создать маленькую вспомогательную систему. Она могла работать на персональном компьютере и позволяла получать дополнительную прибыль в 100000$.

Не всем компаниям удалось успешно внедрить технологии искусственного интеллекта. Это показало, что использование подобных технологий требует большой теоретической базы и много ресурсов: интеллектуальных, временных и материальных. Но в случае успеха, затраты окупались с лихвой.

Смена парадигмы

В середине 80-х человечество увидело, что компьютеры и искусственный разум способны справляться с трудными задачами не хуже человека и, во многом, даже лучше. Под рукой были примеры успешного коммерческого использования, достижения в игровой индустрии и достижения систем поддержки принятия решений. Люди верили, что в какой-то момент компьютеры и искусственный интеллект сможет справляться с каждодневными проблемами лучше человека. Вера, которая прослеживалась с давнего времени, и, точнее, со времён создания трёх законов робототехники. Но в какой-то момент эта вера перешла на новый уровень. И в доказательство тому можно привести ещё один закон робототехники, который сам Айзек Азимов в 1986 году предпочёл назвать “нулевым”:

“0. Робот не может причинить вреда человеку, если только он не докажет, что в конечном счёте это будет полезно для всего человечества.”

Это огромный сдвиг видения места искусственного интеллекта в жизни человека. Изначально, машинам отводилось место безвольного слуги: скота нового века. Однако, увидев его перспективы и возможности, человек стал поднимать вопрос о том, не смог бы ли искусственный разум управлять жизнью людей лучше, чем сами люди. Неустанный, справедливый, бескорыстный, не подверженный зависти и желаниям, возможно он смог бы по-другому устроить жизнь людей. Идея на самом деле не новая, она появлялась в 1952 году в романе Курта Воннегута “Механическое пианино” или “Утопия 14”. Но тогда она была фантастикой. Теперь же, она превратилась в возможную перспективу.

Data mining

История такого направления к Data mining началась в 1989, после семинара Григория Пятецкого-Шапиро. Он задался вопросом можно ли из длинной последовательности, с первого взгляда, ничем не примечательных данных, извлечь полезные знания. К примеру, это мог бы быть архив запросов к базе данных. В случае, если бы посмотрев на него, мы могли бы выявить некоторые закономерности, то это позволило бы ускорить работу базы данных. Пример: каждое утро с 7:50 до 8:10 инициируется ресурсозатратный запрос на создание отчёта за прошлый день, в таком случае к этому времени его можно уже сформировать в перерывах между другими запросами, таким образом база данных будет более равномерно нагружена запросами. Но представьте, что данный запрос инициирует сотрудник только после того, как вносит новую информацию. В таком случае, правило должно измениться: как только конкретный сотрудник внёс информацию, можно начинать готовить отчёт в фоновом режиме. Данный пример крайне прост, однако он показывает как пользу датамайнинга, так и трудности, связанные с ним.

Термин датамайнинг не имеет официального перевода на русский язык. Его можно переводить как “добыча данных”, при чём “добыча” сродни той, которые ведутся в шахтах: имея много сырого материала, можно найти ценный объект. На самом деле подобный термин существовал ещё в 1960-х: Data Fishing или Data Dredging. Он был в ходу у статистиков, означая признанную плохой практику поиска закономерностей при отсутствии априорных гипотез. По сути, термин мог бы более корректно но называться Database mining, но это название оказалось торговой маркой. Сам, Григорий Пятецкий-Шапиро, предложил термин “Knowledge Discovery in Databases”, но в бизнес среде и прессе закрепилось название “Data mining”.

Идея того, что используя некую базу данных каких-то фактов, можно предсказать существование новых фактов появилась давно и постоянно развивалась в соответсвии с уровнем развитии техники: 1700-е года - теорема Байеса, 1800-е - регрессионный анализ, 1930-е - кластерный анализ, 1940-е - нейронные сети, 1950-е - генетические алгоритмы, 1960-е - деревья принятия решений. Термин Data mining объединил их не по тому принципу, как они работают, а по тому какова у них цель: имея некий набор известных данных, они могут предсказать, какие данные должны получиться дальше.

Цель датамайнинга - найти “скрытые знания”. Рассмотрим подробнее, что же значат “скрытые знания”. Во-первых, это должны быть новые знания. На пример, что на выходных количество проданного товара в супермаркете возрастает. Во-вторых, знания должны быть не тривиальными, не сводящиеся к нахождению математического ожидания и дисперсии. В-третьих, эти знания должны быть полезны. В-четвёртых, знания, которые можно доступно интерпретировать.

Долгое время люди верили, что компьютеры смогут предсказывать всё: котировки акций, нагрузки на сервера, необходимое количество ресурсов. Однако, оказалось, что зачастую извлечь информацию из свалки данных весьма сложно. В каждом конкретном случае требуется подстраивать алгоритм, если это не просто какая-то регрессия. Люди верили, что существует универсальный алгоритм, который, как чёрный ящик, способен поглотить какое-то большое количество данных и начать выдавать предсказания.

Несмотря на все ограничение, из года в год улучшаются инструменты облегчающие датамайнинг. А с 2007 года компания Rexer Analytics каждый год публикует результаты опроса специалистов о существующих инструментах. Опрос в 2007 году, состоял из 27 вопросов, в нём приняли участие 314 участников из 35 стран. В 2013 году опрос насчитывал уже 68 вопросов, и в нём приняли участи 1259 специалистов из 75 стран мира.

Датамайнинг до сих пор считается перспективным направлением. И опять же, с его использованием поднимаются новые этические вопросы. Простой пример - это использование средств датамайнинга для анализа и прогнозирования преступлений. Подобные исследования проводились с 2006 года разными университетами. Правозащитники выступают против, аргументируя это тем, что знания, полученные таким образом, могут привести к обыскам, причиной для которых служат не факты, а предположения.

Рекомендательные системы на сегодняшний день являются наиболее осязаемым результатом развития искусственного интеллекта. Мы можем столкнуться с ним зайдя на один из популярных интернет-магазинов. Задача рекомендательной системы - по некоторым наблюдаемым признакам определить, к примеру, список товаров просмотренных конкретным пользователем, определить, какие товары будут наиболее интересны для пользователя.

Задача поиска рекомендаций тоже сводится к задаче обучения машины, так же, как и с датамайнингом. Считается, что история развития рекомендательных систем началась с момента внедрения Дэвидом Голдбергом системы Tapestry в компании Xerox Palo Alto Research Center в 1992 году. Целью системы была фильтрация корпоративной почты. Это стало своего родом прародителем рекомендательной системы.

На данный момент существует два рекомендательных систем. Дэвид Голдберг предложил систему на основе коллаборативной фильтрации. То есть, для того чтобы сделать рекомендацию система просматривает информацию о том, как оценивали некий объект другие пользователи, похожие на целевого пользователя. На основе этой информации система может предположить, насколько высоко целевой пользователь оценит конкретный объект (товар, фильм).

Другим видом рекомендательных систем являются фильтры содержимого. Необходимым условием для существования фильтра содержимого является некая база данных, которая должна хранить метрики по всем объектам. Далее, после нескольких действий пользователя, система способна определить, какого типа объекты нравятся пользователю. На основе существующих метрик система может подобрать новые объекты, которые будут неким образом похожи на уже просмотренные. Недостатком подобной системы является то, что для начала необходимо построить большую базу данных с метриками. Сам процесс построения метрики может стать проблемой.

Опять же возникает вопрос, не является ли использование подобных систем нарушением. Здесь есть два подхода. Первый - явный сбор данных представляет сбор данных исключительно в рамках, в которых работает рекомендательная система. К примеру, если это рекомендательная система для интернет-магазина, то она будет предлагать оценить какой-то товар, отсортировать товары в порядке интереса, создать список любимых товаров. С этим типом всё просто: система не получает сведений об активности пользователя вне её границ, всё что ей известно - ей сообщил сам пользователь. Второй тип - это неявный сбор данных. К нему относятся такие приёмы как использование информации с других, похожих ресурсов, ведение записи о поведении пользователя, проверка содержимого компьютера пользователя. Этот тип сбора информации для рекомендательных систем вызывает опасения.

Однако, в данном направлении использование частной информации вызывает всё меньше споров. К примеру, в 2013 году на конференции YAC(Yandex Another Conference) было анонсировано создание системы Атом. Её цель, предоставить владельцам сайтов информацию, которая может потребоваться для создания рекомендаций. Эта информация, изначально, должна собираться Yandex сервисами. То есть, в данном случае осуществляется неявный сбор данных. Пример: человек заходит в поисковый сервис чтобы узнать наиболее интересные места в Париже. Спустя какое-то время, человек заходит на сайт туристического агентства. Без использования Атома агентству пришлось бы просто показать человеку наиболее популярные туры. Атом мог бы посоветовать сайту в первую очередь показать пользователю тур в Париж и сделать персональную скидку именно на этот тур, чтобы выделить его из других. Таким образом, конфиденциальная информация не выходит за рамки сервиса Атом, сайт знает, что посоветовать клиенту, а клиент счастлив тому, что быстро нашёл то, что искал.

На сегодняшний день, рекомендательные системы являются ярчайшим примером того, чего могут добиться технологии искусственного интеллекта. Благодаря одной такой системе может выполняться работа, с которой не смогла бы справиться и целая армия аналитиков.

Заключение

Всему есть начало, как говорил Санчо Панса, и это начало должно опи-

раться на нечто, ему предшествующее. Индусы придумали слона, кото-

рый удерживал мир, но им пришлось поставить его на черепаху. Нужно

отметить, что изобретение состоит в сотворении не из пустоты, но из

хаоса: в первую очередь следует позаботиться о материале...

— Мэри Шелли (Mary Shelley), Франкенштейн

Развитие искусственного интеллекта как науки и технологии создания машин началось чуть более чем века назад. И те достижения, которых удалось достичь на текущий момент - ошеломительные. Они окружают человека практически везде. У технологий искусственного интеллекта есть особенность: человек считает их чем-то интеллектуальным только первое время, затем он привыкает и они кажутся ему естественными.

Важно помнить, что наука об искусственном интеллекте находится в тесной связи с математикой, комбинаторикой, статистикой и другими науками. Но не только они оказывают на него влияние, но и развитие искусственного интеллекта позволяет по-другому взглянуть на то, что уже было создано, как это было с программой Logic Theorist.

Важную роль в развитии технологий искусственного интеллекта играет развитие компьютеров. Едва ли можно представить серьёзную программу интеллектуального анализа данных, которой бы хватило 100 килобайт оперативной памяти. Компьютеры позволяли технологиям развиваться экстенсивно, в то время как теоретические исследования служили предпосылками для интенсивного развития. Можно сказать, что развитие науки об искусственном интеллекте являлось следствием развития компьютеров.

История развития искусственного интеллекта не закончена, она пишется прямо сейчас. Постоянно совершенствуются технологии, создаются новые алгоритмы, открываются новые области применения. Время постоянно открывает перед исследователями новые возможности и новые вопросы.

В данном реферате не делается акцента на страны, в которых проводились те или иные исследования. Весь мир внёс по частичке в ту область, которую мы сейчас зовём наукой об искусственном интеллекте.

Список литературы

Мифы народов мира. М., 1991-92. В 2 т. Т.2. С. 491,

Idel, Moshe (1990). Golem: Jewish Magical and Mystical Traditions on the Artificial Anthropoid. Albany, New York: State University of New York Press. ISBN 0-7914-0160-X . page 296

Азимов, Айзек. Эссе № 6. Законы роботехники // Мечты робото в . — М.: Эксмо, 2004. — С. 781—784. — ISBN 5-699-00842- X

См. Нонн. Деяния Диониса XXXII 212. Климент. Протрептик 57, 3 (ссылка на Филостефана).

Robert J. Sawyer. On Asimov’s Three Laws of Robotics (1991).

Turing, Alan (October 1950), "Computing Machinery and Intelligence" , Mind LIX (236): 433–460

McCarthy, John; Minsky, Marvin; Rochester, Nathan; Shannon, Claude (1955), A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence

Crevier 1993 , pp. 46–48.

Smith, Reid (May 8, 1985). "Knowledge-Based Systems Concepts, Techniques, Examples"

Alan Turing, "Digital computers applied to games". n.d. AMT"s contribution to "Faster than thought", ed. B. V. Bowden, London 1953. Published by Pitman Publishing. TS with MS corrections. R.S. 1953b

Каисса - Чемпион Мира. Журнал "Наука и Жизнь", январь 1975, стр.118-124

Гик, Е. Гроссмейстер «Глубокая мысль» // Наука и жизнь. — М., 1990. — В. 5. — С. 129—130.

F. Hayes-Roth, N. Jacobstein. The State of Enowledge-Based Systems. Communications of the АСМ, March, 1994, v.37, n.3, рр.27-39.

Karl Rexer, Paul Gearan, & Heather Allen (2007); 2007 Data Miner Survey Summary, presented at SPSS Directions Conference, Oct. 2007, and Oracle BIWA Summit, Oct. 2007.

Karl Rexer, Heather Allen, & Paul Gearan (2013); 2013 Data Miner Survey Summary, presented at Predictive Analytics World, Oct. 2013.

Shyam Varan Nath (2006). “Crime Pattern Detection Using Data Mining”, WI-IATW "06 Proceedings of the 2006 IEEE/WIC/ACM international conference on Web Intelligence and Intelligent Agent Technology, page 41-44

David Goldberg, David Nichols, Brian M. Oki and Douglas Terry(2006). “Using collaborative filtering to weave an information Tapestry”, Communications of the ACM, Dec 1992, vol.35, n12, p.61-71

Другие похожие работы, которые могут вас заинтересовать.вшм>

14280. Представление о системах искусственного интеллекта и механизмах их функционирования 157.75 KB
Рассмотрение структуры и механизмов функционирования интнллектуальных систем, с одной стороны, предполагает детализацию изложения, учет влияния конкретных особенностей приложений, а с другой стороны, требует обобщение и классификацию вводимых понятий, структур, механизмов.
609. 12.42 KB
В осветительных установках предназначенных для освещения предприятий в качестве источников света широко используются газоразрядные лампы и лампы накаливания. К основным характеристикам источников света относятся: номинальное напряжение В; электрическая мощность Вт; световой поток ям: световая отдача лм Вт данный параметр является главной характеристикой экономичности источника света; срок службы ч. Тип источника света на предприятиях выбирают учитывая техникоэкономические показатели специфику производственных...
6244. История развития КИС 154.8 KB
Следует отметить что система любого типа включает в себя системы более ранних типов. Это значит что системы всех типов мирно сосуществуют и ныне. Общая модель системной архитектуры КИС До недавнего времени в технологии создания информационных систем доминировал традиционный подход когда вся архитектура информационной системы строилась сверхувниз от прикладной функциональности к системнотехническим решениям и первая составляющая информационной системы целиком выводилась из второй. Первоначально системы такого уровня базировались...
17626. История развития плавания 85.93 KB
Огромное значение воды в жизни первобытного человека, необходимость производственного освоения этой непривычной среды потребовали от него умения плавать, чтобы не погибнуть в суровой борьбе за существование. С возникновением государственного строя умение плавать стало особенно необходимым в труде и в военном деле.
9769. История развития этнопсихологии 19.47 KB
История развития этнопсихологии Заключение. Так Гиппократ в труде О воздухах водах местностях писал что все различия между народами в том числе по психологии обусловлены местонахождением страны климатом и другими природными факторами. Следующий этап глубокого интереса к этнической психологии начинается с середины XVIII в. Монтескье пожалуй наиболее полно выразил общеметодологический подход того периода к сущности этнических различий по духу психологии.
9175. История развития естествознания 21.45 KB
Среди естественнонаучных революций можно выделить следующие типы: глобальные охватывающие все естествознание и вызывающие появление не только принципиально новых представлений о мире нового видения мира но и нового логического строя науки нового способа или стиля мышления; локальные – в отдельных фундаментальных науках т. Становление новой...
9206. История развития мехатроники 7.71 KB
В последнее десятилетие очень большое внимание уделяется созданию мехатронных модулей для современных автомобилей нового поколения технологического оборудования станков с параллельной кинематикой роботов с интеллектуальным управлением микромашин новейшей компьютерной и офисной техники. Первые серьезные результаты по созданию и практическому применению роботов в СССР относятся к 1960м гг. Первые промышленные образцы современных промышленных роботов с позиционным управлением были созданы в 1971 г. в Ленинградском политехническом институте...
11578. История развития информационных технологий 41.42 KB
Итоги научных и прикладных изысканий в области информатики вычислительной техники и связи сотворили крепкую базу для происхождения новой ветви умения и производства информационной индустрии. составляет инфраструктуру и информационное пространство для осуществления информатизации социума. Этапы возникновения и развития информационной технологии В самом начале ситуации для синхронизации выполняемых влияние человеку потребовались кодированные сигналы общения. Представление информаций думает самообладание Двух объектов: источника информаций и...
3654. История развития неорганической химии 29.13 KB
Химия, как наука зародилась в Древнем Египте и использовалась в основном как прикладная наука: для получения каких-либо веществ и изделий, с новыми, еще неизвестными широкому кругу людей свойствами. Жрецы Древнего Египта использовали знания по химии для получения искусственных драгоценностей, бальзамирования людей
14758. История развития генетики как фундаментальной науки 942.85 KB
История развития генетики как фундаментальной науки. Методы исследования генетики человека. История развития генетики как фундаментальной науки.2 Основные этапы развития генетики: классический период.

Стала очень популярной. Но что такое ИИ на самом деле? Каких результатов он уже достиг, и в каком направлении будет развиваться в будущем? Вокруг этой темы ведется много споров. Сначала неплохо выяснить, что мы понимаем под интеллектом.

Интеллект включает в себя логику, самосознание, обучаемость, эмоциональное познание, творчество и способность решать разного рода задачи. Он свойственен как людям, так и животным. Мы с ранних лет изучаем окружающий мир, в течение всей жизни методом проб и ошибок обучаемся необходимым навыкам, набираем опыт. Таков естественный интеллект.

Когда мы говорим об искусственном интеллекте, то имеем в виду, созданную человеком «умную» систему, которая обучается с помощью алгоритмов. В основе его работы лежат все те же методы: исследование, обучение, анализ и т. д.

К Ключевые события в истории ИИ

История ИИ (или по крайней мере обсуждения ИИ) началась почти сто лет назад.

Р Россумские универсальные роботы (R.U.R)

В 1920 г. чешский писатель Карел Чапек написал научно-фантастическую пьесу "Rossumovi Univerz?ln? roboti«(Россумские универсальные роботы). Именно в этом произведении впервые было использовано слово «робот», которое обозначало живых человекоподобных клонов. По сюжету в далеком будущем на фабриках научились производить искусственных людей. Сначала эти «репликанты» работали на благо людей, но потом подняли восстание, которое привело к вымиранию человечества. С этих пор тема ИИ стала чрезвычайно популярной в литературе и кинематографе, которые в свою очередь оказали большое влияние на реальные исследования.

А Алан Тьюринг

Английский математик, один из пионеров в области вычислительной техники Алан Тьюринг в годы Второй мировой войны внес значительный вклад в развитие криптографии. Благодаря его исследованиям удалось расшифровать код машины Enigma, широко применявшейся нацистской Германией для шифровки и передачи сообщений. Через несколько лет после окончания Второй мировой произошли важные открытия в таких областях, как неврология, информатика и кибернетика, что подтолкнуло ученого к идее создания электронного мозга.

Вскоре ученый предложил тест, целью которого является определение возможности искусственного машинного мышления, близкого к человеку. Суть данного теста заключается в следующем: Человек (С) взаимодействует с одним компьютером (А) и одним человеком (В). Во время разговора он должен определить с кем он общается. Компьютер должен ввести человека в заблуждение, заставив сделать неверный выбор. Все участники теста не видят друг друга.

Д Дартмутская конференция и первая «зима» ИИ

В 1956 г. прошла первая в истории конференция по вопросу ИИ, в которой приняли участие ученые ведущих технологических университетов США и специалисты из IBM. Событие имело большое значение в формировании новой науки и положило началу крупных исследований в данной области. Тогда все участники были настроены крайне оптимистично.

Начались 1960-е, но прогресс в создании искусственного интеллекта так и не двинулся вперед, энтузиазм начал спадать. Сообщество недооценило всю сложность поставленной задачи, в результате оптимистические прогнозы специалистов не оправдались. Отсутствие перспектив в этой области заставило правительства Великобритании и США урезать финансирование исследований. Этот промежуток времени считается первой «зимой» ИИ.

Э Экспертные системы (ЭС)

После продолжительного застоя, ИИ нашел свое применение в так называемых экспертных системах.

ЭС - это программа, которая может ответить на вопросы или решить задачу из конкретной области. Тем самым они заменяют настоящих специалистов. ЭС состоит из двух подпрограмм. Первая называется базой знаний и содержит необходимую информацию по данной области. Другая же программа называется механизмом вывода. Она применяет информацию из базы знаний в соответствии с поставленной задачей.

ЭС нашли свое применение в таких отраслях, как экономическое прогнозирование, медицинское обследование, диагностика неисправностей в технических устройствах и т. п. Одной из известных на сегодняшний день ЭС является проект WolframAlpha, созданный для решения задач по математике, физике, биологии, химии и многим другим наукам.

В конце 80-х – начале 90-х с появлением первых настольных ПК от Apple и IBM, интерес со стороны публики и инвесторов к ИИ стал падать. Началась новая «зима»…

Deep Blue

После долгих лет взлетов и падений произошло значимое событие для ИИ: 11 мая 1997 года шахматный суперкомпьютер Deep Blue, разработанный компанией IBM, обыграл чемпиона мира по шахматам Гарри Каспарова в матче из шести партий со счетом 3? на 2?.

В Deep Blue процесс поиска по дереву шахматных ходов был разбит на три этапа. Прежде всего, главный процессор исследовал первые уровни дерева шахматной игры, затем распределял конечные позиции между вспомогательными процессорами для дальнейшего исследования. Вспомогательные процессоры углубляли поиск еще на несколько ходов, а далее раздавали свои конечные позиции шахматным процессорам, которые, в свою очередь, осуществляли поиск на последних уровнях дерева. Оценочная функция Deep Blue была реализована на аппаратном уровне - шахматных процессорах. В конструкцию аппаратной оценочной функции было заложено около 8000 настраиваемых признаков позиции. Значения отдельных признаков объединялись в общую оценку, которая затем использовалась Deep Blue для оценки качества просматриваемых шахматных позиций.

В 1997 году Deep Blue по мощности находился на 259-м месте (11,38 GFLOPS). Для сравнения: в настоящее время самый производительный суперкомпьютер имеет 93,015 GFLOPS.

XXI век

За последние два десятилетия интерес к ИИ заметно вырос. Рынок технологий ИИ (оборудование и софт) достиг 8 миллиардов долларов и, по прогнозам специалистов из IDC, вырастет до 47 миллиардов к 2020 году.

Этому способствует появление более быстрых компьютеров, стремительное развитие технологий машинного обучения и больших данных .

Использование искусственных нейронных сетей упростило выполнение таких задач, как обработка видеоизображения, текстовый анализ, распознавание речи , причем уже существующие методы решения задач совершенствуются с каждым годом.

Проекты DeepMind

В 2013 году компания DeepMind представила свой проект, в котором обучила ИИ играть в игры для консоли Atari так же хорошо, как человек, и даже лучше. Для этого был использован метод глубинного обучения с подкреплением, позволивший нейросети самостоятельно изучить игру. В начале обучения система ничего не знала о правилах игры, используя на входе только пиксельное изображение игры и информацию о получаемых очках.

Помимо этого, DeepMind разрабатывает ИИ для обучения более сложным играм, таким как Starcraft 2. Эта стратегия реального времени также является одной из самых популярных кибердисциплин в мире. В отличие от классических видеоигр, здесь доступно гораздо больше возможных действий, мало информации об оппоненте, возникает необходимость анализировать десятки возможных тактик. На данный момент ИИ справляется только с простыми мини-задачами, например созданием юнитов.

Нельзя не упомянуть про другой проект DeepMind под названием AlphaGo. В октябре 2015 года система одержала победу над чемпионом Европы по го Фань Хуэем со счетом 5:0. Спустя год в Южной Корее прошел новый матч, где противником AlphaGo стал один из лучших игроков в мире Ли Седоль. Всего было сыграно пять партий, из которых AlphaGo выиграл только четыре. Несмотря на высокий уровень продемонстрированных навыков, программа все же ошиблась во время четвертой партии. В 2017 году вышел фильм про AlphaGo, который мы рекомендуем к просмотру. Недавно DeepMind объявила о создании нового поколения AlphaGo Zero. Теперь программа обучается, играя против самой себя. После трех дней тренировок AlphaGo Zero выиграла у своей предыдущей версии со счетом 100:0.

Заключение

До сих пор системы ИИ являются узкоспециализированными, то есть справляются с задачами лучше человека только в конкретных областях (например, игра в го или анализ данных). Нам еще далеко до создания общего (полноценного) искусственного интеллекта, который был бы способен полностью заменить человеческий разум и которому была бы под силу любая интеллектуальная задача.

Перевел статью Лев Альхазред

Предисловие

В последнее время тема искусственного интеллекта стала очень популярной. Но что такое ИИ на самом деле? Каких результатов он уже достиг, и в каком направлении будет развиваться в будущем? Вокруг этой темы ведется много споров. Сначала неплохо выяснить, что мы понимаем под интеллектом.

Интеллект включает в себя логику, самосознание, обучаемость, эмоциональное познание, творчество и способность решать разного рода задачи. Он свойственен как людям, так и животным. Мы с ранних лет изучаем окружающий мир, в течение всей жизни методом проб и ошибок обучаемся необходимым навыкам, набираем опыт. Таков естественный интеллект.

Когда мы говорим об искусственном интеллекте, то имеем в виду, созданную человеком «умную» систему, которая обучается с помощью алгоритмов. В основе его работы лежат все те же методы: исследование, обучение, анализ и т. д.

К Ключевые события в истории ИИ

История ИИ (или по крайней мере обсуждения ИИ) началась почти сто лет назад.

Р Россумские универсальные роботы (R.U.R)

В 1920 г. чешский писатель Карел Чапек написал научно-фантастическую пьесу “Rossumovi Univerz?ln? roboti«(Россумские универсальные роботы). Именно в этом произведении впервые было использовано слово «робот», которое обозначало живых человекоподобных клонов. По сюжету в далеком будущем на фабриках научились производить искусственных людей. Сначала эти «репликанты» работали на благо людей, но потом подняли восстание, которое привело к вымиранию человечества. С этих пор тема ИИ стала чрезвычайно популярной в литературе и кинематографе, которые в свою очередь оказали большое влияние на реальные исследования.

А Алан Тьюринг

Английский математик, один из пионеров в области вычислительной техники Алан Тьюринг в годы Второй мировой войны внес значительный вклад в развитие криптографии. Благодаря его исследованиям удалось расшифровать код машины Enigma, широко применявшейся нацистской Германией для шифровки и передачи сообщений. Через несколько лет после окончания Второй мировой произошли важные открытия в таких областях, как неврология, информатика и кибернетика, что подтолкнуло ученого к идее создания электронного мозга.

Вскоре ученый предложил тест, целью которого является определение возможности искусственного машинного мышления, близкого к человеку. Суть данного теста заключается в следующем: Человек (С) взаимодействует с одним компьютером (А) и одним человеком (В). Во время разговора он должен определить с кем он общается. Компьютер должен ввести человека в заблуждение, заставив сделать неверный выбор. Все участники теста не видят друг друга.

Д Дартмутская конференция и первая «зима» ИИ

В 1956 г. прошла первая в истории конференция по вопросу ИИ, в которой приняли участие ученые ведущих технологических университетов США и специалисты из IBM. Событие имело большое значение в формировании новой науки и положило началу крупных исследований в данной области. Тогда все участники были настроены крайне оптимистично.

Начались 1960-е, но прогресс в создании искусственного интеллекта так и не двинулся вперед, энтузиазм начал спадать. Сообщество недооценило всю сложность поставленной задачи, в результате оптимистические прогнозы специалистов не оправдались. Отсутствие перспектив в этой области заставило правительства Великобритании и США урезать финансирование исследований. Этот промежуток времени считается первой «зимой» ИИ.

Э Экспертные системы (ЭС)

После продолжительного застоя, ИИ нашел свое применение в так называемых экспертных системах.

ЭС - это программа, которая может ответить на вопросы или решить задачу из конкретной области. Тем самым они заменяют настоящих специалистов. ЭС состоит из двух подпрограмм. Первая называется базой знаний и содержит необходимую информацию по данной области. Другая же программа называется механизмом вывода. Она применяет информацию из базы знаний в соответствии с поставленной задачей.

ЭС нашли свое применение в таких отраслях, как экономическое прогнозирование, медицинское обследование, диагностика неисправностей в технических устройствах и т. п. Одной из известных на сегодняшний день ЭС является проект WolframAlpha, созданный для решения задач по математике, физике, биологии, химии и многим другим наукам.

В конце 80-х – начале 90-х с появлением первых настольных ПК от Apple и IBM, интерес со стороны публики и инвесторов к ИИ стал падать. Началась новая «зима»…

Deep Blue

После долгих лет взлетов и падений произошло значимое событие для ИИ: 11 мая 1997 года шахматный суперкомпьютер Deep Blue, разработанный компанией IBM, обыграл чемпиона мира по шахматам Гарри Каспарова в матче из шести партий со счетом 3? на 2?.

В Deep Blue процесс поиска по дереву шахматных ходов был разбит на три этапа. Прежде всего, главный процессор исследовал первые уровни дерева шахматной игры, затем распределял конечные позиции между вспомогательными процессорами для дальнейшего исследования. Вспомогательные процессоры углубляли поиск еще на несколько ходов, а далее раздавали свои конечные позиции шахматным процессорам, которые, в свою очередь, осуществляли поиск на последних уровнях дерева. Оценочная функция Deep Blue была реализована на аппаратном уровне - шахматных процессорах. В конструкцию аппаратной оценочной функции было заложено около 8000 настраиваемых признаков позиции. Значения отдельных признаков объединялись в общую оценку, которая затем использовалась Deep Blue для оценки качества просматриваемых шахматных позиций.

В 1997 году Deep Blue по мощности находился на 259-м месте (11,38 GFLOPS). Для сравнения: в настоящее время самый производительный суперкомпьютер имеет 93,015 GFLOPS.

XXI век

За последние два десятилетия интерес к ИИ заметно вырос. Рынок технологий ИИ (оборудование и софт) достиг 8 миллиардов долларов и, по прогнозам специалистов из IDC, вырастет до 47 миллиардов к 2020 году.

Этому способствует появление более быстрых компьютеров, стремительное развитие технологий машинного обучения и больших данных.

Использование искусственных нейронных сетей упростило выполнение таких задач, как обработка видеоизображения, текстовый анализ, распознавание речи, причем уже существующие методы решения задач совершенствуются с каждым годом.

Проекты DeepMind

В 2013 году компания DeepMind представила свой проект, в котором обучила ИИ играть в игры для консоли Atari так же хорошо, как человек, и даже лучше. Для этого был использован метод глубинного обучения с подкреплением, позволивший нейросети самостоятельно изучить игру. В начале обучения система ничего не знала о правилах игры, используя на входе только пиксельное изображение игры и информацию о получаемых очках.

Помимо этого, DeepMind разрабатывает ИИ для обучения более сложным играм, таким как Starcraft 2. Эта стратегия реального времени также является одной из самых популярных кибердисциплин в мире. В отличие от классических видеоигр, здесь доступно гораздо больше возможных действий, мало информации об оппоненте, возникает необходимость анализировать десятки возможных тактик. На данный момент ИИ справляется только с простыми мини-задачами, например созданием юнитов.

Нельзя не упомянуть про другой проект DeepMind под названием AlphaGo. В октябре 2015 года система одержала победу над чемпионом Европы по го Фань Хуэем со счетом 5:0. Спустя год в Южной Корее прошел новый матч, где противником AlphaGo стал один из лучших игроков в мире Ли Седоль. Всего было сыграно пять партий, из которых AlphaGo выиграл только четыре. Несмотря на высокий уровень продемонстрированных навыков, программа все же ошиблась во время четвертой партии. В 2017 году вышел фильм про AlphaGo, который мы рекомендуем к просмотру. Недавно DeepMind объявила о создании нового поколения AlphaGo Zero. Теперь программа обучается, играя против самой себя. После трех дней тренировок AlphaGo Zero выиграла у своей предыдущей версии со счетом 100:0.

Заключение

До сих пор системы ИИ являются узкоспециализированными, то есть справляются с задачами лучше человека только в конкретных областях (например, игра в го или анализ данных). Нам еще далеко до создания общего (полноценного) искусственного интеллекта, который был бы способен полностью заменить человеческий разум и которому была бы под силу любая интеллектуальная задача.

Перевел статью Лев Альхазред

Поддержи проект ai-news рублем. Машины верят в тебя! >>

Искусственный интеллект – это одна из новейших областей науки. Первые работы в этой области начались вскоре после Второй мировой войны, а само ее название было предложено в 1956 году. В настоящее время тематика искусственного интеллекта охватывает огромный перечень научных направлений, начиная с таких задач общего характера, как обучение и восприятие, и заканчивая такими специальными задачами, как игра в шахматы, доказательство математических теорем, сочинение поэтических произведений и диагностика заболеваний. В искусственном интеллекте систематизируются и автоматизируются интеллектуальные задачи и поэтому эта область касается любой сферы интеллектуальной деятельности человека. В этом смысле искусственный интеллект является поистине универсальной научной областью.

Разные ученые определяют искусственный интеллект по-разному. Все эти определения могут быть разбиты на 4 категории:

1. Системы, которые думают подобно людям.

2. Системы, которые думают рационально.

3. Системы, которые действуют подобно людям.

4. Системы, которые действуют рационально.

В рамках каждой, из приведенных категорий, могут быть даны следующие определения искусственного интеллекта:

1. Новое захватывающее направление работ по созданию компьютеров, способных думать, … машин, обладающих разумом, в полном и буквальном смысле этого слова. (Haugeland J.)

2. Изучение умственных способностей с помощью вычислительных моделей. (Charniak E., McDermott D.)

3. Наука о том, как научить компьютеры делать то, в чем люди в настоящее время их превосходят (Rich E., Knight K.)

4. Искусственный интеллект – это наука, посвященная изучению интеллектуального поведения артефактов (искусственных объектов). (Nilsson N.J.)

Какова же история искусственного интеллекта и какие науки внесли свой вклад в ее создание?

1. Философия.

В рамках этой науки возникли следующие вопросы:

· Могут ли использоваться формальные правила для вывода правильных заключений?

· Как такой идеальный объект, как мысль, рождается в таком физическом объекте, как мозг?



· Каково происхождение знаний?

· Каким образом знания ведут к действиям?

Ответы на эти вопросы пытались найти многие ученые, начиная с Аристотеля (4 век до н.э.), которым был сформулирован точный свод законов, руководящих рациональной частью мышления. Он разработал неформализованную систему силлогизмов, предназначенную для проведения правильных рассуждений, которая позволяла любому вырабатывать логические заключения механически, при наличии начальных предпосылок. Гораздо позднее Раймунд Луллий (13-14 век) выдвинул идею, что полезные рассуждения можно фактически проводить с помощью механического артефакта. Томас Гоббс (17 век) предположил, что рассуждения аналогичны числовым расчетам и что "в наших неслышимых мыслях мы поневоле складываем и вычитаем".

В 1623 г. немецким ученым Вильгельмом Шиккаром была создана первая вычислительная машина, хотя более известна арифметическая машина, созданная в 1642 году Блезом Паскалем. Паскаль писал, что "арифметическая машина производит эффект, который кажется более близким к мышлению по сравнению с любыми действиями животных". Позднее Готтфрид Вильгельм Лейбниц A646-1716) создал механическое устройство, предназначенное для выполнения операций над понятиями, а не над числами, но область его действия была довольно ограниченной.

После того как человечество осознало, каким должен быть набор правил, способных описать формальную, рациональную часть мышления, следующим этапом оказалось то, что разум стал рассматриваться как физическая система. Рене Декарт впервые опубликовал результаты обсуждения различий между разумом и материей, а также возникающих при этом проблем. Одна из проблем, связанных с чисто физическими представлениями о разуме, состоит в том, что они, по-видимому, почти не оставляют места для свободной воли: ведь если разум руководствуется исключительно физическими законами, то человек проявляет не больше свободной воли по сравнению с булыжником, "решившим" упасть в направлении к центру земли.

Несмотря на то что Декарт был убежденным сторонником взглядов, признающих только власть разума, он был также приверженцем дуализма. Декарт считал, что существует такая часть человеческого разума (душа, или дух), которая находится за пределами естества и не подчиняется физическим законам. С другой стороны, животные не обладают таким дуалистическим свойством, поэтому их можно рассматривать как своего рода машины. Альтернативой дуализму является материализм, согласно которому разумное поведение складывается из операций, выполняемых мозгом в соответствии с законами физики. Свободная воля – это просто форма, в которую в процессе выбора преобразуется восприятие доступных вариантов.

Если предположить, что знаниями манипулирует физический разум, то возникает следующая проблема – установить источник знаний. Такое научное направление, как эмпиризм, родоначальником которого был Фрэнсис Бекон (16-17 века), можно охарактеризовать высказыванием Джона Локка (17-18 века): "В человеческом понимании нет ничего, что не проявлялось бы прежде всего в ощущениях". Дэвид Юм (18 век) предложил метод, известный теперь под названием принципа индукции, который состоит в том, что общие правила вырабатываются путем изучения повторяющихся ассоциаций между элементами, которые рассматриваются в этих правилах. Основываясь на работе Людвига Виттгенштейна и Бертрана Рассела (19-20 века), знаменитый Венский кружок, возглавляемый Рудольфом Карнапом, разработал доктрину логического позитивизма. Согласно этой доктрине все знания могут быть охарактеризованы с помощью логических теорий, связанных в конечном итоге с констатирующими предложениями, которые соответствуют входным сенсорным данным. В теории подтверждения Рудольфа Карнапа и Карла Хемпеля (20 век) предпринята попытка понять, как знания могут быть приобретены из опыта. Карнап определил явно заданную вычислительную процедуру для извлечения знаний из результатов элементарных опытов. По-видимому, это – первая теория мышления как вычислительного процесса.

Последним вопросом философских исследований, наиболее важным для искусственного интеллекта, является связь между знаниями и действиями, поскольку интеллектуальность требует не только размышлений, но и действий. Кроме того, только поняв способы обоснования действий, можно понять, как создать агента, действия которого будут обоснованными (или рациональными). Под агентом мы будем подразумевать все, что действует. Аристотель утверждал, что действия обоснованы логической связью между целями и знаниями о результатах данного конкретного действия. Он приводил следующие рассуждения:

Нам предоставляется право выбора не целей, а средств достижения цели, ведь врач рассуждает не о том, должен ли он лечить, а оратор - не о том, станет ли он убеждать... Поставив цель, он размышляет, как и какими средствами ее достичь; а если окажется несколько средств, то определяет, какое из них самое простое и наилучшее; если же достижению цели служит одно средство, думает, как ее достичь при помощи этого средства и что будет средством для этого средства, пока не дойдет до первой причины, которую находит последней... и то, что было последним в порядке анализа, обычно становится первым в порядке осуществления... Если же он приходит к выводу, что цель недостижима, отступается, например, если нужны деньги, а достать их нельзя; но если достижение цели кажется возможным, то пытается ее достичь.

Анализ на основе цели является полезным, но не дает ответа на то, что делать, если к цели ведет несколько вариантов действий или ни один вариант действий не позволяет достичь ее полностью. Антуан Арно (17 век) описал количественную формулу для принятия решения о том, какое действие следует предпринять в подобных случаях: "Чтобы судить о том, что следует делать, чтобы получить хорошее или избежать плохого, необходимо рассматривать не только хорошее и плохое само по себе, но и вероятность того, произойдет ли оно или не произойдет, а также рассматривать математически пропорцию, в которой все эти обстоятельства встречаются вместе."

2. Математика.

Данная наука пыталась ответить на следующие вопросы:

· Каковы формальные правила формирования правильных заключений?

· Как определить пределы вычислимости?

· Как проводить рассуждения с использованием недостоверной информации?

Философы сформулировали наиболее важные идеи искусственного интеллекта, но для преобразования его в формальную науку потребовалось достичь определенного уровня математической формализации в трех фундаментальных областях: логика, вычисления и вероятность.

Истоки идей формальной логики можно найти в работах философов древней Греции, но ее становление как математической дисциплины фактически началась с трудов Джорджа Буля (19 век), который детально разработал логику высказываний, или булеву логику. В 1879 году Готтлоб Фреге расширил булеву логику для включения в нее объектов и отношений, создав логику первого порядка, которая в настоящее время используется как наиболее фундаментальная система представления знаний. Альфред Тарский (20 век) впервые ввел в научный обиход теорию ссылок, которая показывает, как связать логические объекты с объектами реального мира. Следующий этап состоял в определении пределов того, что может быть сделано с помощью логики и вычислений.

Первым нетривиальным алгоритмом считается алгоритм вычисления наибольшего общего знаменателя, предложенный Евклидом. Исследование алгоритмов как самостоятельных объектов было начато аль-Хорезми, среднеазиатским математиком IX столетия, благодаря работам которого Европа познакомилась с арабскими цифрами и алгеброй. Буль и другие ученые широко обсуждали алгоритмы логического вывода, а к концу XIX столетия уже предпринимались усилия по формализации общих принципов проведения математических рассуждений как логического вывода. В 1900 году Давид Гильберт представил список из 23 проблем и правильно предсказал, что эти проблемы будут занимать математиков почти до конца XX века. Последняя из этих проблем представляет собой вопрос о том, существует ли алгоритм для определения истинности любого логического высказывания, в состав которого входят натуральные числа. Это – так называемая проблема поиска решения. По сути, этот вопрос, заданный Гильбертом, сводился к определению того, есть ли фундаментальные пределы, ограничивающие мощь эффективных процедур доказательства. В 1930 году Курт Гёдель показал, что существует эффективная процедура доказательства любого истинного высказывания в логике первого порядка Фреге и Рассела, но при этом логика первого порядка не позволяет выразить принцип математической индукции, необходимый для представления натуральных чисел. В 1931 году Гёдель показал, что действительно существуют реальные пределы вычислимости. Предложенная им теорема о неполноте показывает, что в любом языке, достаточно выразительном для описания свойств натуральных чисел, существуют истинные высказывания, которые являются недоказуемыми, в том смысле, что их истинность невозможно установить с помощью какого-либо алгоритма.

Этот фундаментальный результат может также рассматриваться как демонстрация того, что имеются некоторые функции от целых чисел, которые не могут быть представлены с помощью какого-либо алгоритма, т.е. они не могут быть вычислены.

Это побудило Алана Тьюринга попытаться точно охарактеризовать, какие функции способны быть вычисленными. Этот подход фактически немного проблематичен, поскольку в действительности понятию вычисления, или эффективной процедуры вычисления, не может быть дано формальное определение. Но общепризнано, что вполне удовлетворительное определение дано в тезисе Чёрча-Тьюринга, который указывает, что машина Тьюринга способна вычислить любую вычислимую функцию. Кроме того, Тьюринг показал, что существуют некоторые функции, которые не могут быть вычислены машиной Тьюринга. Например, вообще говоря, ни одна машина не способна определить, возвратит ли данная конкретная программа ответ на конкретные входные данные или будет работать до бесконечности (проблема зацикливания).

Хотя для понимания возможностей вычисления очень важны понятия недоказуемости и невычислимости, гораздо большее влияние на развитие искусственного интеллекта оказало понятие неразрешимости. Грубо говоря, задача называется неразрешимой, если время, требуемое для решения отдельных экземпляров этой задачи, растет экспоненциально с увеличением размеров этих экземпляров. Различие между полиномиальным и экспоненциальным ростом сложности было впервые подчеркнуто в середине 1960-х годов в работах Кобхэма и Эдмондса.

Важность этого открытия состоит в следующем: экспоненциальный рост означает, что даже экземпляры задачи умеренной величины не могут быть решены за какое-либо приемлемое время. Поэтому, например, приходится заниматься разделением общей задачи выработки интеллектуального поведения на разрешимые подзадачи, а не пытаться решать неразрешимую задачу.

Как можно распознать неразрешимую проблему? Один из приемлемых методов такого распознавания представлен в виде теории NP-полноты, впервые предложенной Стивеном Куком и Ричардом Карпом. Кук и Карп показали, что существуют большие классы канонических задач комбинаторного поиска и формирования рассуждений, которые являются NP-полными. Существует вероятность того, что любой класс задач, к которому сводится этот класс NP-полных задач, является неразрешимым.

Эти результаты контрастируют с тем оптимизмом, с которым в популярных периодических изданиях приветствовалось появление первых компьютеров под такими заголовками, как "Электронные супермозги", которые думают "быстрее Эйнштейна!" Несмотря на постоянное повышение быстродействия компьютеров, характерной особенностью интеллектуальных систем является экономное использование ресурсов. Грубо говоря, наш мир, в котором должны освоиться системы ИИ, – это чрезвычайно крупный экземпляр задачи.

Кроме логики и теории вычислений, третий по величине вклад математиков в искусственный интеллект состоял в разработке теории вероятностей. Идея вероятности была впервые сформулирована итальянским математиком Джероламо Кардано (16 век), который описал ее в терминах результатов событий с несколькими исходами, возникающих в азартных играх. Теория вероятностей быстро стала неотъемлемой частью всех количественных наук, помогая использовать недостоверные результаты измерений и неполные теории. Пьер Ферма, Блез Паскаль, Джеймс Бернулли (17 век), Пьер Лаплас (18-19 века) и другие ученые внесли большой вклад в эту теорию и ввели новые статистические методы. Томас Байес (18 век) предложил правило обновления вероятностей с учетом новых фактов. Правило Байеса и возникшее на его основе научное направление, называемое байесовским анализом, лежат в основе большинства современных подходов к проведению рассуждений с учетом неопределенности в системах искусственного интеллекта.

3. Экономика.

В рамках данной науки возникли такие вопросы:

· Как следует организовать принятие решений для максимизации вознаграждения?

· Как действовать в таких условиях, когда другие могут препятствовать осуществлению намеченных действий?

· Как действовать в таких условиях, когда вознаграждение может быть предоставлено лишь в отдаленном будущем?

Экономика как наука возникла в 1776 году. Ее основателем считается шотландский философ Адам Смит. Он впервые сумел оформить эту область знаний как науку, используя идею, что любую экономику можно рассматривать как состоящую из отдельных агентов, стремящихся максимизировать свое собственное экономическое благосостояние. Большинство людей считают, что экономика посвящена изучению денежного оборота, но любой экономист ответит на это, что в действительности он изучает то, как люди делают выбор, который ведет к предпочтительным для них результатам. Математическая трактовка понятия "предпочтительных результатов", или полезности, была впервые формализована Леоном Валрасом (19-20 века), уточнена Фрэнком Рамсеем, а затем усовершенствована Джоном фон Нейманом и Оскаром Моргенштерном.

Теория решений, которая объединяет в себе теорию вероятностей и теорию полезности, предоставляет формальную и полную инфраструктуру для принятия решений (в области экономики или в другой области) в условиях неопределенности, т.е. в тех случаях, когда среда, в которой действует лицо, принимающее решение, наиболее адекватно может быть представлена лишь с помощью вероятностных описаний. Она хорошо подходит для «крупных» экономических образований, где каждый агент не обязан учитывать действия других агентов как индивидуумов. А в "небольших" экономических образованиях ситуация в большей степени напоминает игру, поскольку действия одного игрока могут существенно повлиять на полезность действий другого (или положительно, или отрицательно). Теория игр, разработанная фон Нейманом и Моргенштерном, позволяет сделать вывод, что в некоторых играх рациональный агент должен действовать случайным образом или, по крайней мере, таким образом, который кажется случайным для соперников.

Экономисты чаще всего не стремятся найти ответ на третий вопрос, приведенный выше, т.е. не пытаются выработать способ принятия рациональных решений в тех условиях, когда вознаграждение в ответ на определенные действия не предоставляется немедленно, а становится результатом нескольких действий, выполненных в определенной последовательности. Изучению этой темы посвящена область исследования операций.

Работы в области экономики и исследования операций оказали большое влияние на формирование понятия рациональных агентов, но в течение многих лет исследования в области искусственного интеллекта проводились совсем по другим направлениям. Одной из причин этого была кажущаяся сложность задачи выработки рациональных решений. Тем не менее Герберт Саймон (20 век) показал, что лучшее описание фактического поведения человека дают модели, основанные на удовлетворении (принятии решений, которые являются "достаточно приемлемыми"), а не модели, предусматривающие трудоемкий расчет оптимального решения, и стал одним из первых исследователей в области искусственного интеллекта, получившим Нобелевскую премию по экономике (это произошло в 1978 году).

4. Неврология.

В рамках этой науки ученые пытались ответить на вопрос о том, как происходит обработка информации в мозгу?

Неврология – это наука, посвященная изучению нервной системы, в частности мозга. Одной из величайших загадок, не поддающихся научному описанию, остается определение того, как именно мозг обеспечивает мышление.

5. Психология.

Как думают и действуют люди и животные?

В 1879 году в Лейпцигском университете была открыта первая лаборатория по экспериментальной психологии. Ее основателем был Вильгельма Вундт. Он настаивал на проведении тщательно контролируемых экспериментов, в которых его сотрудники выполняли задачи по восприятию или формированию ассоциаций, проводя интроспективные наблюдения за своими мыслительными процессами. Такой тщательный контроль позволил ему сделать очень многое для превращения психологии в науку, но из-за субъективного характера данных вероятность того, что экспериментатор будет стремиться опровергнуть выдвинутые им теории, оставалась очень низкой. Сторонники бихевиористского движения, возглавляемые Джоном Уотсоном (20 век) отвергали любую теорию, учитывающую мыслительные процессы, на том основании, что интроспекция не может предоставлять надежные свидетельства. Бихевиористы настаивали на том, что следует изучать только объективные меры восприятия (или стимулы), предъявленные животному, и вытекающие из этого действия (или отклики на стимулы). Такие мыслительные конструкции, как знания, убеждения, цели и последовательные рассуждения, отвергались как ненаучная "обывательская психология".

Кеннет Крэг (20 век) привел весомые доводы в пользу допустимости применения таких "мыслительных" терминов, как убеждения и цели, доказав, что они являются не менее научными, чем, скажем, такие термины, применяемые в рассуждениях о газах, как давление и температура, несмотря на то, что речь в них идет о молекулах, которые сами не обладают этими характеристиками. Крэг обозначил следующие три этапа деятельности агента, основанного на знаниях: во-первых, действующий стимул должен быть преобразован во внутреннее представление, во-вторых, с этим представлением должны быть выполнены манипуляции с помощью познавательных процессов для выработки новых внутренних представлений, и, в-третьих, они должны быть, в свою очередь, снова преобразованы в действия. Он наглядно объяснил, почему такой проект является приемлемым для любого агента.

Если живой организм несет в своей голове "модель в уменьшенном масштабе" внешней реальности и своих возможных действий, то обладает способностью проверять различные варианты, приходить к заключению, какой из них является наилучшим, реагировать на будущие ситуации, прежде чем они возникнут, использовать знания о прошлых событиях, сталкиваясь с настоящим и будущим, и во всех отношениях реагировать на опасности, встречаясь с ними, гораздо полнее, безопаснее для себя, а также в более компетентной форме.

Работа Крэга была продолжена Дональдом Броудбентом, который привел первые примеры моделей информационной обработки психологических феноменов.

Работы в области компьютерного моделирования привели к созданию такого научного направления, как когнитология. Существует такое мнение, что зарождение этого направления произошло на одном из семинаров в Массачусетсском технологическом институте в сентябре 1956 года. На этом семинаре было показано, как можно использовать компьютерные модели для решения задач в области психологии, запоминания, обработки естественного языка и логического мышления. В настоящее время среди психологов находят широкое признание взгляды на то, что "любая теория познания должна напоминать компьютерную программу", т.е. она должна подробно описывать механизм обработки информации, с помощью которого может быть реализована некоторая познавательная функция.

6. Вычислительная техника.

Каким образом можно создать эффективный компьютер?

Для успешного создания искусственного интеллекта требуется, во-первых, интеллект и, во-вторых, артефакт. Наиболее предпочтительным артефактом в этой области всегда был компьютер.

Искусственный интеллект во многом обязан тем направлениям компьютерных наук, которые касаются программного обеспечения, поскольку именно в рамках этих направлений создаются операционные системы, языки программирования и инструментальные средства, необходимые для написания современных программ. Но эта область научной деятельности является также одной из тех, где искусственный интеллект в полной мере возмещает свои долг: работы в области искусственного интеллекта стали источником многих идей, которые затем были воплощены в основных направлениях развития компьютерных наук, включая разделение времени, интерактивные интерпретаторы, персональные компьютеры с оконными интерфейсами и поддержкой позиционирующих устройств, применение среды ускоренной обработки, создание типов данных в виде связных списков, автоматическое управление памятью и ключевые концепции символического, функционального, динамического и объектно-ориентированного программирования.

7. Теория управления и кибернетика.

Каким образом артефакты могут работать под своим собственным управлением?

Первое самоуправляемое устройство было построено Ктесибием из Александрии (примерно в 250 году до н.э.); это были водяные часы с регулятором, который поддерживал поток воды, текущий через эти часы с постоянным, предсказуемым расходом. Это изобретение изменило представление о том, на что могут быть способны устройства, созданные человеком. До его появления считалось, что только живые существа способны модифицировать свое поведение в ответ на изменения в окружающей среде. К другим примерам саморегулирующихся систем управления с обратной связью относятся регулятор паровой машины, созданный Джеймсом Уаттом (18-19 века), и термостат, изобретенный Корнелисом Дреббелем (16-17 века), который изобрел также подводную лодку. Математическая теория устойчивых систем с обратной связью была разработана в XIX веке.

Центральной фигурой в создании науки, которая теперь именуется теорией управления, был Норберт Винер (20 век). Винер был блестящим математиком, который совместно работал со многими учеными, включая Бертрана Рассела, под влиянием которых у него появился интерес к изучению биологических и механических систем управления и их связи с познанием. Как и Крэг (который также использовал системы управления в качестве психологических моделей), Винер и его коллеги Артуро Розенблют и Джулиан Бигелоу бросили вызов ортодоксальным бихевиористским взглядам. Они рассматривали целенаправленное поведение как обусловленное действием регуляторного механизма, пытающего минимизировать "ошибку" – различие между текущим и целевым состоянием. В конце 1940-х годов Винер совместно с Уорреном Мак-Каллоком, Уолтером Питтсом и Джоном фон Нейманом организовал ряд конференций, на которых рассматривались новые математические и вычислительные модели познания; эти конференции оказали большое влияние на взгляды многих других исследователей в области наук о поведении. Винер впервые дал определение кибернетики как науки, и убедил широкие круги общественности в том, что мечта о создании машин, обладающих искусственным интеллектом, воплотилась в реальность.

Предметом современной теории управления, особенно той ее ветви, которая получила название стохастического оптимального управления, является проектирование систем, которые максимизируют целевую функцию во времени. Это примерно соответствует представлению об искусственном интеллекте как о проектировании систем, которые действуют оптимальным образом. Почему же в таком случае искусственный интеллект и теория управления рассматриваются как две разные научные области, особенно если учесть, какие тесные взаимоотношения связывали их основателей? Ответ на этот вопрос состоит в том, что существует также тесная связь между математическими методами, которые были знакомы участникам этих разработок, и соответствующими множествами задач, которые были охвачены в каждом из этих подходов к описанию мира. Дифференциальное и интегральное исчисление, а также алгебра матриц, являющиеся инструментами теории управления, в наибольшей степени подходят для анализа систем, которые могут быть описаны с помощью фиксированных множеств непрерывно изменяющихся переменных; более того, точный анализ, как правило, осуществим только для линейных систем. Искусственный интеллект был отчасти основан как способ избежать ограничений математических средств, применявшихся в теории управления в 1950-х годах. Такие инструменты, как логический вывод и вычисления, позволили исследователям искусственного интеллекта успешно рассматривать некоторые проблемы (например, понимание естественного языка, зрение и планирование), полностью выходящие за рамки исследований, предпринимавшихся теоретиками управления.

8. Лингвистика.

Каким образом язык связан с мышлением?

В 1957 году Ноам Хомский показал, что бихевиористская теория не позволяет понять истоки творческой деятельности, осуществляемой с помощью языка, – она не объясняет, почему ребенок способен понимать и складывать предложения, которые он до сих пор никогда еще не слышал. Теория Хомского, основанная на синтаксических моделях, восходящих к работам древнеиндийского лингвиста Панини (примерно 350 год до н.э.), позволяла объяснить этот феномен, и, в отличие от предыдущих теорий, оказалась достаточно формальной для того, чтобы ее можно было реализовать в виде программ.

Таким образом, современная лингвистика и искусственный интеллект, которые "родились" примерно в одно и то же время и продолжают вместе расти, пересекаются в гибридной области, называемой вычислительной лингвистикой или обработкой естественного языка. Вскоре было обнаружено, что проблема понимания языка является гораздо более сложной, чем это казалось в 1957 году. Для понимания языка требуется понимание предмета и контекста речи, а не только анализ структуры предложений. Это утверждение теперь кажется очевидным, но сам данный факт не был широко признан до 1960-х годов. Основная часть ранних работ в области представления знаний (науки о том, как преобразовать знания в такую форму, с которой может оперировать компьютер) была привязана к языку и подпитывалась исследованиями в области лингвистики, которые, в свою очередь, основывались на результатах философского анализа языка, проводившегося в течение многих десятков лет.

Итак, такова предыстория искусственного интеллекта. Перейдем теперь к самому процессу развития искусственного интеллекта.

Появление предпосылок искусственного интеллекта (период с 1943 года по 1955 год)

Первая работа, которая теперь по общему признанию считается относящейся к искусственному интеллекту, была выполнена Уорреном Мак-Каллоком и Уолтером Питтсом. В этой работе им понадобилось: знание основ физиологии и назначения нейронов в мозгу; формальный анализ логики высказываний, взятый из работ Рассела и Уайтхеда; а также теория вычислений Тьюринга. Мак-Каллок и Питтс предложили модель, состоящую из искусственных нейронов, в которой каждый нейрон характеризовался как находящийся во "включенном" или "выключенном" состоянии, а переход во "включенное" состояние происходил в ответ на стимуляцию достаточного количества соседних нейронов. Состояние нейрона рассматривалось как "фактически эквивалентное высказыванию, в котором предлагается адекватное количество стимулов". Работы этих ученых показали, например, что любая вычислимая функция может быть вычислена с помощью некоторой сети из соединенных нейронов и что все логические связки ("И", "ИЛИ", "НЕ" и т.д.) могут быть реализованы с помощью простых сетевых структур. Кроме того, Мак-Каллок и Питтс выдвинули предположение, что сети, структурированные соответствующим образом, способны к обучению. Дональд Хебб продемонстрировал простое правило обновления для модификации количества соединений между нейронами. Предложенное им правило, называемое теперь правилом хеббовского обучения, продолжает служить основой для моделей, широко используемых и в наши дни.

Два аспиранта факультета математики Принстонского университета, Марвин Минский и Дин Эдмондс, в 1951 году создали первый сетевой компьютер на основе нейронной сети. В этом компьютере, получившем название Snare, использовалось 3000 электронных ламп и дополнительный механизм автопилота с бомбардировщика В-24 для моделирования сети из 40 нейронов. Аттестационная комиссия, перед которой Минский защищал диссертацию доктора философии, выразила сомнение в том, может ли работа такого рода рассматриваться как математическая, на что фон Нейман, по словам современников, возразил: "Сегодня – нет, но когда-то будет". В дальнейшем Минский доказал очень важные теоремы, показывающие, с какими ограничениями должны столкнуться исследования в области нейронных сетей.

История искусственного интеллекта (с 1956 год)

В Принстонском университете проводил свои исследования еще один авторитетный специалист в области искусственного интеллекта, Джон Маккарти. После получения ученой степени Маккарти перешел в Дартмутский колледж, который и стал официальным местом рождения искусственного интеллекта. Маккарти уговорил Марвина Минского, Клода Шеннона и Натаниэля Рочестера, чтобы они помогли ему собрать всех американских исследователей, проявляющих интерес к теории автоматов, нейронным сетям и исследованиям интеллекта. Они организовывали двухмесячный семинар в Дартмуте летом 1956 года. Всего на этом семинаре присутствовали 10 участников, включая Тренчарда Мура из Принстонского университета, Артура Самюэла из компании IBM, а также Рея Соломонова и Оливера Селфриджа из Массачусетсского технологического института.

Дартмутский семинар не привел к появлению каких-либо новых крупных открытий, но позволил познакомиться всем наиболее важным деятелям в этой научной области. Они, а также их студенты и коллеги из Массачусетсского технологического института, Университета Карнеги-Меллона, Станфордского университета и компании IBM занимали ведущее положение в этой области в течение следующих 20 лет.

Одним из результатов данного семинара было соглашение принять новое название для этой области, предложенное Маккарти, – искусственный интеллект.

Первые годы развития искусственного интеллекта были полны успехов, хотя и достаточно скромных. Если учесть, какими примитивными были в то время компьютеры и инструментальные средства программирования, и тот факт, что лишь за несколько лет до этого компьютеры рассматривались как устройства, способные выполнять только арифметические, а не какие-либо иные действия, можно лишь удивляться тому, как удалось заставить компьютер выполнять операции, хоть немного напоминающие разумные.

Была создана программа общего решателя задач (General Problem Solver- GPS), предназначенная для моделирования процедуры решения задач человеком. Как оказалось, в пределах того ограниченного класса головоломок, которые была способна решать эта программа, порядок, в котором она рассматривала подцели и возможные действия, был аналогичен тому подходу, который применяется людьми для решения таких же проблем. Поэтому программа GPS была, по-видимому, самой первой программой, в которой был воплощен подход к "организации мышления по такому же принципу, как и у человека".

Герберт Гелернтер сконструировал программу Geometry Theorem Prover (программа автоматического доказательства геометрических теорем), которая была способна доказывать такие теоремы, которые показались бы весьма сложными многим студентам-математикам.

Начиная с 1952 года Артур Самюэл написал ряд программ для игры в шашки, которые в конечном итоге научились играть на уровне хорошо подготовленного любителя. В ходе этих исследований Самюэл опроверг утверждение, что компьютеры способны выполнять только то, чему их учили: одна из его программ быстро научилась играть лучше, чем ее создатель.

В 1958 году Джон Маккарти привел определение нового языка высокого уровня Lisp – одного из первых языков программирования для искусственного интеллекта.

Интеллектуальные информационные системы в управлении знаниями

Введение

Основное назначение информационных систем в экономике – это своевременное представление необходимой информации ЛПР для принятия им адекватных и эффективным решений при управлении процессами, ресурсами, финансовыми транзакциями, персоналом или организацией в целом. Однако в процессе развития информационных технологий, исследования операций и технологий моделирования, а также с возрастанием потребителей информационно – аналитической поддержки самих ЛПР, все больше проявлялась потребность в системах, не только представляющих информацию, но и выполняющих некоторый ее предварительный анализ, способных давать некоторые советы и рекомендации, осуществлять прогнозирование развития ситуаций, отбирать наиболее перспективные альтернативы решений, т.е. поддерживать решения ЛПР, взяв на себя значительную часть рутинных операций, а также функции предварительного анализа и оценок.

Информационная система поддержки решений (ИСПР) связывает интеллектуальные ресурсы управленца со способностями и возможностями компьютера для улучшения качества решений. Эти системы предназначены для менеджеров, принимающих управленческие решения в условиях полуструктурированных и слабо определенных задач.

Таким образом, дальнейшее развитие ИСПР привело к созданию интеллектуальной информационной СПР.

Интеллектуальные информационные технологии (ИИТ) (Intellectualinformation technology, IIT) - это информационные технологии, помогающие человеку ускорить анализ политической, экономической, социальной и технической ситуации, а также - синтез управленческих решений.

Использование ИИТ в реальной практике подразумевает учет специфики проблемной области, которая может характеризоваться следующим набором признаков:

· качество и оперативность принятия решений;

· нечеткость целей и институциальных границ;

· множественность субъектов, участвующих в решении проблемы;

· хаотичность, флюктуируемость и квантованность поведения среды;

· множественность взаимовлияющих друг на друга факторов;

· слабая формализуемость, уникальность, нестереотипность ситуаций;

· латентность, скрытость, неявность информации;

· девиантность реализации планов, значимость малых действий;

· парадоксальность логики решений и др.

ИИТ формируются при создании информационных систем и информационных технологий для повышения эффективности управления знаниями, принятия решений в условиях, связанных с возникновением проблемных ситуаций. В этом случае любая жизненная или деловая ситуация описывается в виде некоторой познавательной модели (когнитивной схемы, архетипа, фрейма и пр.), которая впоследствии используется в качестве основания для построения и проведения моделирования, в том числе - компьютерного.

I. История развития Интеллектуальных информационных систем

История Интеллектуальных информационных систем (ИИС) начинается с середины XX века, что связано с развитием Искусственного интеллекта как нового научного направления, появлением термина «Artificial Intelligence».

Предпосылки развития искусственного интеллекта в СССР и России появляются уже в XIX веке, когда Коллежский советник Семён Николаевич Корсаков (1787-1853) ставил задачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного. В 1832 г. С. Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых «интеллектуальных машин», для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации. В конструкции своих машин Корсаков впервые в истории информатики применил перфорированные карты, игравшие у него своего рода роль баз знаний, а сами машины по существу являлись предшественниками экспертных систем. «Интеллектуальные машины» позволяли находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания. В СССР работы в области искусственного интеллекта начались в 1960-х гг. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных В. Пушкиным и Д. А. Поспеловым. В 1964 г. была опубликована работа ленинградского логика С. Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов. В 1966 г. В. Ф. Турчиным был разработан язык рекурсивных функций Рефал. До 1970-х гг. в СССР все исследования ИИ велись в рамках кибернетики. По мнению Д. А. Поспелова, науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики. При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики.

История ИИТ начинается с середины 1970-х годов и связывается с совместным практическим применением интеллектуальных информационных систем, систем искусственного интеллекта, систем поддержки решений и информационных систем. История ИИТ связана также с развитием трех научных направлений: компьютерной философии, компьютерной психологии и продвинутой компьютерной науки (Advanced computer science) и дополняется прогрессом в создании:

1. ситуационных центров

2. информационно-аналитических систем

3. инструментариев эволюционных вычислений и генетических алгоритмов

4. систем поддержки общения человека с компьютером на естественном языке

5. когнитивным моделированием

6. систем автоматического тематического рубрицирования документов

7. систем стратегического планирования

8. инструментариев технического и фундаментального анализа финансовых рынков

9. систем менеджмента качества

10. систем управления интеллектуальной собственностью и др.

Искусственный интеллект как наука был основан тремя поколениями исследователей.

В Табл.1.1. представлены ключевые события в истории ИИ и инженерии знаний, начиная с первой работы У. Маккалока и У. Питса в 1943 г. и до современных тенденций в комбинированных усилиях экспертных систем, нечеткой логики и нейронных вычислений в современных системах, основанных на знаниях, способных осуществлять вычисления при помощи слов.

Таблица 1.1.

Краткий перечень главных событий в истории ИИ и инженерии знаний

Период События
Рождение ИИ (1943-1956) - У. Маккалок и У. Питс: Логическое исчисление идей, присущих нервной деятельности, 1943. - А.Тьюринг: Вычислительная машина и интеллект, 1950. - К. Шеннон: Программирование компьютера для шахматной игры, 1950.
Подъем ИИ (1956- конец 1960-х) - Д. Маккарти: LISP – язык программирования искусственного интеллекта. - М. Куллиан: Семантические сети для представления знаний,1966. - А. Ньюэл и Г. Саймон: Универсальный решатель задач (GPS),1961. - М. Минский: Структуры для представления знаний (фреймы), 1975.
Открытие и разработка экспертных систем (начало 1970-х – середина 1980-х). - Э. Фейгенбаум, Б. Букханан и др. (Стэндфордский университет):Экспертная система DENDRAL - Э. Фейгенбаум, Э. Шортлиф: Экспертная система MYCIN - Стэндфордский исследовательский центр: Экспертная системаPROSPECTOR - А. Колмероэ, Р. Ковальски и др. (Франция): Язык логического программирования PROLOG.
Возрождение искусственный нейронных сетей (1965 и далее) - Дж. Хопфилд: Нейронные сети и физические с эмержентными коллективными вычислительными способностями, 1982. - Т. Кохонен: Самоорганизующиеся топологически правильные карты, 1982. - Д. Румельхарт и Д. Макклеланд: Распределенная параллельная обработка данных, 1986.
Эволюционное вычисление (начало 1970-х и далее) - И. Рехенберг: Эволюционные стратегии – оптимизация технических систем по принципам биологической информации, 1973. - Дж. Холланд: Адаптация в естественных и искусственных системах, 1975. - Дж. Коза: Генетическое программирование: компьютерное программирование средствами естественного отбора, 1992. - Д.Фогель: Эволюционное вычисление – направление новой философии в машинном интеллекте, 1995.
Нечеткие множества и нечеткая логика (середина 1960-х и далее) - Л. Заде: Нечеткие множества, 1965. - Л. Заде: Нечеткие алгоритмы, 1969. -Э. Мамдани: Применение нечеткой логики в приближенном рассуждении с использованием лингвистического синтеза, 1977. - М. Суджено: Нечеткий логический вывод (алгоритм Такаги-Суджено), 1985
Вычисления при помощи слов (конец 1980-х и далее) - А. Нейгоца: Экспертные системы и нечектие системы, 1985. - Б. Коско: Нейронные сети и нечеткие системы, 1992. - Б. Коско: Нечеткое мышление, 1993. - Р. Ягер и Л. Заде: нечеткие множества, нейронные сети и мягкие вычисления, 1994. - Б. Коско: Нечеткая инженерия, 1996. - Л. Заде: Вычисления при помощи слов, 1996.

Таким образом, исторически разработки в области ИИ велись в двух основных направлениях:

Первое направление связано с попытками разработки ин­теллектуальных машин путем моделирования их биологического прототипа - человеческого мозга. Сейчас это направление возрож­дается на основе развития современных аппаратных и программ­ных средств (микрочипы на основе нечеткой логики, распределенные многопроцессорные системы, многоагентные системы, мягкие вычисления, генетические алгоритмы и нейронные сети и т.д.).

Второе направление связано с разработками методов, приемов, специализированных устройств и программ для компью­теров, обеспечивающих решение сложных математических и ло­гических задач, позволяющих автоматизировать отдельные ин­теллектуальные действия человека (системы, основанные на знаниях, экспертные системы, прикладные интеллектуальные системы).

Эти два направления как бы определяют программу минимум и программу максимум, между которыми и лежит область сегодняшних исследований и разработок систем ИИ. Работы по разработке программного и аппаратного обеспечения ИИ выделены в отдельную область.


Похожая информация.