Понятие о силе инерции. Тема ii. силы инерции. Общий подход к нахождению сил инерции

Они используются в литературе, хотя и не получили пока повсеместного распространения. В дальнейшем мы будем придерживаться данной терминологии, как позволяющей сделать изложение более сжатым и ясным.

Эйлерова сила инерции в общем случае складывается из нескольких составляющих различного происхождения, которым также присвоены специальные наименования («переносная», «кориолисова» и др.). Более детально об этом говорится в соответствующем разделе ниже.

В других языках используемые названия сил инерции более явно указывают на их особые свойства: в немецком нем. Scheinkräfte («мнимая», «кажущаяся», «видимая», «ложная», «фиктивная» сила), в английском англ. pseudo force («псевдосила») или англ. fictitious force («фиктивная сила»). Реже в английском используются названия «сила д’Аламбера » (англ. d’Alembert force ) и «инерционная сила» (англ. inertial force ). В литературе, издаваемой на русском языке, по отношению к эйлеровой и даламберовой силам также используют аналогичные характеристики, называя эти силы «фиктивными» , «кажущимися» , «воображаемыми» или «псевдосилами»

Одновременно с этим в литературе иногда подчёркивают реальность сил инерции , противопоставляя значение данного термина значению термина фиктивность . При этом, однако, различные авторы вкладывают в эти слова различный смысл, и силы инерции оказываются реальными или фиктивными не в силу отличий в понимании их основных свойств, а в зависимости от избранных определений. Такое употребление терминологии некоторые авторы считают неудачным и рекомендуют просто избегать его в учебном процессе .

Хотя дискуссия по поводу терминологии ещё не закончена, имеющиеся разногласия не влияют на математическую формулировку уравнений движения с участием сил инерции и не приводят к возникновению каких-либо недоразумений при использовании уравнений на практике.

Силы в классической механике

Действительно, физическая величина, называемая силой, вводится в рассмотрение вторым законом Ньютона, при этом сам закон формулируется только для инерциальных систем отсчёта . Соответственно, понятие силы оказывается определённым только для таких систем отсчёта .

Уравнение второго закона Ньютона, связывающее ускорение a → {\displaystyle {\vec {a}}} и m {\displaystyle m} массу материальной точки с действующей на неё силой F → {\displaystyle {\vec {F}}} , записывается в виде

a → = F → m . {\displaystyle {\vec {a}}={\frac {\vec {F}}{m}}.}

Из уравнения непосредственно следует, что причиной ускорения тел являются только силы, и наоборот: действие на тело не скомпенсированных сил обязательно вызывает его ускорение.

Третий закон Ньютона дополняет и развивает сказанное о силах во втором законе.

Никакие другие силы в классической механике в рассмотрение не вводятся и не используются . Возможность существования сил, возникших самостоятельно, без взаимодействующих тел, механикой не допускается .

Хотя в наименованиях эйлеровых и даламберовых сил инерции содержится слово сила , эти физические величины силами в смысле, принятом в механике, не являются .

Ньютоновы силы инерции

Некоторые авторы используют термин «сила инерции» для обозначения силы-противодействия из третьего закона Ньютона . Понятие было введено Ньютоном в его «Математических началах натуральной философии» : «Врождённая сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает своё состояние покоя или равномерного прямолинейного движения. От инерции материи происходит, что всякое тело лишь с трудом выводится из своего покоя или движения. Поэтому врожденная сила могла бы быть весьма вразумительно названа силою инерции. Эта сила проявляется телом единственно лишь, когда другая сила, к нему приложенная, производит изменение в его состоянии. Проявление этой силы может быть рассматриваемо двояко - и как сопротивление, и как напор.», а собственно термин «сила инерции» был, по словам Эйлера , впервые употреблён в этом значении Кеплером ( , со ссылкой на Е. Л. Николаи).

Для обозначения этой силы-противодействия некоторые авторы предлагают использовать термин «ньютонова сила инерции» во избежание путаницы с фиктивными силами, применяемыми при вычислениях в неинерциальных системах отсчёта и при использовании принципа д’Аламбера.

Отголоском ньютоновского выбора слова «сопротивление» для описания инерции является также представление о некоей силе, якобы реализующей это свойство в форме сопротивления изменениям параметров движения. В связи с этим Максвелл заметил, что с таким же успехом можно было бы сказать, что кофе сопротивляется тому, чтобы стать сладким, так как сладким он становится не сам по себе, а лишь после добавления сахара .

Существование инерциальных систем отсчёта

Ньютон исходил из предположения, что инерциальные системы отсчёта существуют и среди этих систем существует наиболее предпочтительная (сам Ньютон связывал её с эфиром, заполняющим всё пространство). Дальнейшее развитие физики показало, что такой системы нет, но это привело к необходимости выйти за пределы классической физики.

Движение в инерциальной СО

Выполнив тривиальную математическую операцию в выражении третьего закона Ньютона (5) и перенеся член из правой части в левую, получаем безупречную математически запись:

F 1 → + F 2 → = 0 {\displaystyle {\vec {F_{1}}}+{\vec {F_{2}}}=0} (6)

С физической точки зрения, сложение векторов сил имеет своим результатом получение равнодействующей силы.

В таком случае, прочтённое с точки зрения второго закона Ньютона выражение (6) означает, с одной стороны, что равнодействующая сил равна нулю и, следовательно, система из этих двух тел не двигается ускоренно. С другой стороны, здесь не высказаны никакие запреты на ускоренное движение самих тел.

Дело в том, что понятие о равнодействующей возникает лишь в случае оценки совместного действия нескольких сил на одно и то же тело. В данном же случае, хотя силы равны по модулю и противоположны по направлению, но приложены к разным телам и потому, касательно каждого из рассматриваемых тел по отдельности, не уравновешивают друг друга, поскольку на каждое из взаимодействующих тел действует лишь одна из них. Равенство (6) не указывает на взаимную нейтрализацию их действия для каждого из тел, оно говорит о системе в целом.

Повсеместно используется запись уравнения, выражающего второй закон Ньютона в инерциальной системе отсчёта:

F r → = m a r → {\displaystyle {\vec {F_{r}}}=m{\vec {a_{r}}}} (7)

Если есть результирующая всех реальных сил, действующих на тело, то это выражение, представляющее собой каноническую запись Второго закона, является просто утверждением, что получаемое телом ускорение пропорционально этой силе и массе тела. Оба выражения, стоящие в каждой части этого равенства, относятся к одному и тому же телу.

Но выражение (7) может быть, подобно (6), переписано в виде:

F r → − m a r → = 0 {\displaystyle {\vec {F_{r}}}-m{\vec {a_{r}}}=0} (8)

Для постороннего наблюдателя, находящегося в инерциальной системе и анализирующего ускорение тела, на основании сказанного выше такая запись имеет физический смысл только в том случае, если члены в левой части равенства относятся к силам, возникающим одновременно, но относящимся к разным телам. И в (8) второй член слева представляет собой такую же по величине силу, но направленную в противоположную сторону и приложенную к другому телу, а именно силу , то есть

F i 1 → = − m a r → {\displaystyle {\vec {F_{i_{1}}}}=-m{\vec {a_{r}}}} (9)

В случае, когда оказывается целесообразным разделение взаимодействующих тел на ускоряемое и ускоряющее и, чтобы отличить действующие тогда на основании Третьего закона силы, те из них, которые действуют со стороны ускоряемого тела на ускоряющее, называют силами инерции F → i 1 {\displaystyle {\vec {F}}_{i_{1}}} или «ньютоновыми силами инерции» , что соответствует записи выражения (5) для Третьего закона в новых обозначениях:

F r → = − F i 1 → {\displaystyle {\vec {F_{r}}}=-{\vec {F_{i_{1}}}}} (10)

Существенно, что сила действия ускоряющего тела на ускоряемое и сила инерции имеют одно и то же происхождение и, если массы взаимодействующих тел близки друг другу настолько, что и получаемые ими ускорения сравнимы по величине, то введение особого наименования «сила инерции» является лишь следствием достигнутой договорённости. Оно так же условно, как и само деление сил на действие и противодействие.

Иначе обстоит дело, когда массы взаимодействующих тел несравнимы между собой (человек и твёрдый пол, отталкиваясь от которого, он идёт). В этом случае деление тел на ускоряющие и ускоряемые становится вполне отчётливым, а ускоряющее тело может рассматриваться как механическая связь , ускоряющая тело, но не ускоряемая сама по себе.

В инерциальной системе отсчёта сила инерции приложена не к ускоряемому телу, а к связи.

Эйлеровы силы инерции

Движение в неинерциальной СО

Дважды продифференцировав по времени обе части равенства r = R + r ′ {\displaystyle r=R+r{^{\prime }}} , получаем:

A r → = a R → + a r ′ → {\displaystyle {\vec {a_{r}}}={\vec {a_{R}}}+{\vec {a_{r^{\prime }}}}} (11), где:

a r → = r ¨ {\displaystyle {\vec {a_{r}}}={\ddot {r}}} есть ускорение тела в инерциальной СО, далее называемое абсолютным ускорением. a R → = R ¨ {\displaystyle {\vec {a_{R}}}={\ddot {R}}} есть ускорение неинерциальной СО в инерциальной СО, далее называемое переносным ускорением. a r ′ → = r ¨ ′ {\displaystyle {\vec {a_{r^{\prime }}}}={\ddot {r}}{^{\prime }}} есть ускорение тела в неинерциальной СО, далее называемое относительным ускорением.

Существенно, что это ускорение зависит не только от действующей на тело силы, но и от ускорения системы отсчёта, в которой это тело движется, и потому при произвольном выборе этой СО может иметь соответственно произвольное значение.

Умножим обе части уравнения (11) на массу тела m {\displaystyle m} и получим:

M a r → = m a R → + m a r ′ → {\displaystyle m{\vec {a_{r}}}=m{\vec {a_{R}}}+m{\vec {a_{r^{\prime }}}}} (12)

В соответствии со вторым законом Ньютона, сформулированным для инерциальных систем, член слева является результатом умножения массы на вектор, определяемый в инерциальной системе, и потому с ним можно связать реальную силу:

M a r → = F r → {\displaystyle m{\vec {a_{r}}}={\vec {F_{r}}}} . Это сила, действующая на тело в первой (инерциальной) СО, которая будет здесь названа «абсолютной силой». Она продолжает действовать на тело с неизменными направлением и величиной в любой системе координат.

Следующая сила, определяемая как:

M a R → = F R → {\displaystyle m{\vec {a_{R}}}={\vec {F_{R}}}} (13)

по принятым для наименования происходящих движений правилам должна быть названа «переносной».

Важно, что ускорение a R → {\displaystyle {\vec {a_{R}}}} в общем случае никакого отношения к изучаемому телу не имеет, поскольку вызвано теми силами, которые действуют лишь на тело, выбранное в качестве неинерциальной системы отсчёта. Но масса, входящая в выражение, есть масса изучаемого тела. Ввиду искусственности введения такой силы её нужно считать фиктивной силой.

Перенося выражения для абсолютной и переносной силы в левую часть равенства:

M a r → − m a R → = m a r ′ → {\displaystyle m{\vec {a_{r}}}-m{\vec {a_{R}}}=m{\vec {a_{r^{\prime }}}}} (14)

и применяя введённые обозначения, получаем:

F r → − F R → = m a r ′ → {\displaystyle {\vec {F_{r}}}-{\vec {F_{R}}}=m{\vec {a_{r^{\prime }}}}} (15)

Отсюда видно, что вследствие ускорения в новой системе отсчёта на тело действует не полная сила , но лишь её часть F ′ → {\displaystyle {\vec {F^{\prime }}}} , оставшаяся после вычитания из неё переносной силы F R → {\displaystyle {\vec {F_{R}}}} так, что:

F ′ → = m a r ′ → {\displaystyle {\vec {F^{\prime }}}=m{\vec {a_{r^{\prime }}}}} (16)

тогда из (15) получаем:

F r → − F R → = F ′ → {\displaystyle {\vec {F_{r}}}-{\vec {F_{R}}}={\vec {F^{\prime }}}} (17)

по принятым для наименования происходящих движений эта сила должна быть названа «относительной». Именно эта сила вызывает движение тела в неинерциальной системе координат.

Полученный результат в разнице между «абсолютной» и «относительной» силами объясняется тем, что в неинерциальной системе, кроме силы F → r {\displaystyle {\vec {F}}_{r}} , на тело дополнительно подействовала некая сила F → i 2 {\displaystyle {\vec {F}}_{i_{2}}} таким образом, что:

F r → + F i 2 → = F ′ → {\displaystyle {\vec {F_{r}}}+{\vec {F_{i_{2}}}}={\vec {F^{\prime }}}} (18)

Эта сила представляет собой силу инерции, применительно к движению тел в неинерциальных СО. Она никак не связана с действием реальных сил на тело.

Тогда из (17) и (18) получаем:

F i 2 → = − F R → {\displaystyle {\vec {F_{i_{2}}}}=-{\vec {F_{R}}}} (19)

То есть сила инерции в неинерциальной СО равна по величине и противоположна по направлению силе, вызывающей ускоренное движение этой системы. Она приложена к ускоряемому телу.

Сила эта не является по своему происхождению результатом действия окружающих тел и полей, и возникает исключительно за счёт ускоренного движения второй системы отсчёта относительно первой.

Все входящие в выражение (18) величины могут быть независимым друг от друга образом измерены, и поэтому поставленный здесь знак равенства означает не что иное, как признание возможности распространения ньютоновской аксиоматики при учёте таких «фиктивных сил» (сил инерции) и на движение в неинерциальных системах отсчёта, и потому требует экспериментального подтверждения. В рамках классической физики это действительно и подтверждается.

Различие между силами F i 1 → {\displaystyle {\vec {F_{i_{1}}}}} и состоит лишь в том, что вторая наблюдается при ускоренном движении тела в неинерциальной системе координат, а первая соответствует его неподвижности в этой системе. Поскольку неподвижность есть лишь предельный случай движения с малой скоростью, принципиальной разницы между этими фиктивными силами инерции нет.

Пример 2

Пусть вторая СО движется с постоянной скоростью или просто неподвижна в инерциальной СО. Тогда a R → = 0 {\displaystyle {\vec {a_{R}}}=0} и сила инерции отсутствует. Движущееся тело испытывает ускорение, вызываемое действующими на него реальными силами.

Пример 3

Пусть вторая СО движется с ускорением a R → = a r → {\displaystyle {\vec {a_{R}}}={\vec {a_{r}}}} , то есть эта СО фактически совмещена с движущимся телом. Тогда в этой, неинерциальной, СО тело неподвижно вследствие того, что действующая на него сила полностью скомпенсирована силой инерции:

F i 2 → = − F r → = F i 1 → {\displaystyle {\vec {F_{i_{2}}}}=-{\vec {F_{r}}}={\vec {F_{i_{1}}}}}

Пример 4

Пассажир едет в легковом автомобиле с постоянной скоростью. Пассажир - тело, автомобиль - его система отсчёта (пока инерциальная), то есть F r → = 0 {\displaystyle {\vec {F_{r}}}=0} .

Автомобиль начинает тормозить и превращается для пассажира во вторую рассмотренную выше неинерциальную систему, к которой навстречу её движению приложена сила торможения F R → {\displaystyle {\vec {F_{R}}}} . В этой неинерциальной системе отсчёта возникает сила инерции, приложенная к пассажиру и направленная противоположно по отношению к ускорению автомобиля (то есть по его скорости): F i 2 → {\displaystyle {\vec {F_{i_{2}}}}} . Сила инерции стремится вызвать в данной системе отсчёта движение тела пассажира по направлению к ветровому стеклу .

Однако движению пассажира препятствует ремень безопасности : под действием тела пассажира ремень растягивается и с соответствующей силой воздействует на пассажира. Эта реакция ремня уравновешивает силу инерции и пассажир в системе отсчёта, связанной с автомобилем, ускорения не испытывает, оставаясь неподвижным относительно автомобиля в процессе всего торможения.

С точки зрения наблюдателя, находящегося в произвольной инерциальной системе отсчёта (например, связанной с дорогой), пассажир теряет скорость в результате действия на него силы со стороны ремня. Благодаря этой силе возникает ускорение (отрицательное) пассажира, её работа вызывает уменьшение кинетической энергии пассажира. Ясно при этом, что никаких сил инерции в инерциальной системе отсчёта не возникает, и они для описания движения пассажира не привлекаются.

Примеры использования

В некоторых случаях при расчётах удобно использовать неинерциальную систему отсчёта, например:

  • движение подвижных деталей автомобиля удобно описывать в системе координат, связанных с автомобилем. В случае ускорения автомобиля эта система становится неинерциальной;
  • движение тела по круговой траектории иногда удобно описывать в системе координат, связанной с этим телом. Такая система координат неинерциальна из-за центростремительного ускорения .

В неинерциальных системах отсчёта стандартные формулировки законов Ньютона неприменимы. Так при ускорении автомобиля, в системе координат, связанной с корпусом автомобиля, незакреплённые предметы внутри получают ускорение в отсутствие какой-либо силы, прикладываемой непосредственно к ним; а при движении тела по орбите, в связанной с телом неинерциальной системе координат тело покоится, хотя на него действует ничем не сбалансированная сила гравитации, выступавшая в качестве центростремительной в той инерциальной системе координат, в которой наблюдалось вращение по орбите.

Для восстановления возможности применения в этих случаях привычных формулировок законов Ньютона и связанных с ними уравнений движения для каждого рассматриваемого тела оказывается удобно ввести фиктивную силу - силу инерции - пропорциональную массе этого тела и величине ускорения системы координат, и противонаправленную вектору этого ускорения.

С использованием этой фиктивной силы появляется возможность краткого описания реально наблюдаемых эффектов: «почему при разгоне автомобиля пассажира прижимает к спинке сиденья?» - «на тело пассажира действует сила инерции». В инерциальной системе координат, связанной с дорогой, сила инерции для объяснения происходящего не требуется: тело пассажира в ней ускоряется (вместе с автомобилем), и это ускорение производит сила, с которой сиденье действует на пассажира .

Сила инерции на поверхности Земли

Пусть F 1 → {\displaystyle {\vec {F_{1}}}} есть сумма всех сил, действующих на тело в неподвижной (первой) системе координат, которая вызывает его ускорение . Эта сумма находится путём измерения ускорения тела в этой системе, если известна его масса.

Аналогично, F 2 → {\displaystyle {\vec {F_{2}}}} есть сумма сил, измеренная в неинерциальной системе координат (второй), вызывающая ускорение a 2 → {\displaystyle {\vec {a_{2}}}} , в общем случае отличающаяся от a 1 → {\displaystyle {\vec {a_{1}}}} вследствие ускоренного движения второй СО относительно первой.

Тогда сила инерции в неинерциальной системе координат будет определяться разницей:

F i 2 → = F 2 → − F 1 → {\displaystyle {\vec {F_{i_{2}}}}={\vec {F_{2}}}-{\vec {F_{1}}}} (19)

F i 2 → = m (a 2 → − a 1 →) {\displaystyle {\vec {F_{i_{2}}}}=m({\vec {a_{2}}}-{\vec {a_{1}}})} (20)

В частности, если тело покоится в неинерциальной системе, то есть a 2 → = 0 {\displaystyle {\vec {a_{2}}}=0} , то

F i 2 → = − F 1 → {\displaystyle {\vec {F_{i_{2}}}}=-{\vec {F_{1}}}} (21) .

Движение тела по произвольной траектории в неинерциальной СО

Положение материального тела в условно неподвижной и инерциальной системе задаётся здесь вектором r → {\displaystyle {\vec {r}}} , а в неинерциальной системе - вектором r ′ → {\displaystyle {\vec {r^{\prime }}}} . Расстояние между началами координат определяется вектором R → {\displaystyle {\vec {R}}} . Угловая скорость вращения системы задаётся вектором ω → {\displaystyle {\vec {\omega }}} , направление которого устанавливается по оси вращения по правилу правого винта . Линейная скорость тела по отношению к вращающейся СО задаётся вектором v → {\displaystyle {\vec {v}}} .

В данном случае ускорение, в соответствии с (11), будет равно сумме :

A r → = d 2 R → d t 2 + d ω → d t × r ′ → + 2 ω → × v → + ω → × [ ω → × r ′ → ] , (22) {\displaystyle {\vec {a_{r}}}={\frac {d^{2}{\vec {R}}}{dt^{2}}}+{\frac {d{\vec {\omega }}}{dt}}\times {\vec {r"}}+{2{\vec {\omega }}\times {\vec {v}}}+{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {r"}}\right],\qquad (22)}

  • первый член - переносное ускорение второй системы относительно первой;
  • второй член - ускорение, возникающее из-за неравномерности вращения системы вокруг своей оси;

Работа сил инерции

В классической физике силы инерции встречаются в двух различных ситуациях в зависимости от системы отсчёта, в которой производится наблюдение . Это - сила, приложенная к связи при наблюдении в инерциальной СО, или сила, приложенная к рассматриваемому телу, при наблюдении в неинерциальной системе отсчёта. Обе эти силы могут совершать работу. Исключением является сила Кориолиса, которая работы не совершает, поскольку всегда направлена перпендикулярно вектору скорости. В то же время сила Кориолиса может изменить траекторию движения тела и, тем самым, способствовать совершению работы другими силами (такими, как сила трения). Примером этому может служить эффект Бэра .

Кроме того, в некоторых случаях бывает целесообразно разделить действующую силу Кориолиса на две составляющие, каждая из которых совершает работу. Суммарная работа, производимая этими составляющими, равна нулю, но такое представление может оказаться полезным при анализе процессов перераспределения энергии в рассматриваемой системе .

При теоретическом рассмотрении, когда искусственно сводят динамическую задачу движения к задаче статики, вводят третий вид сил, называемый силами Даламбера, которые работы не совершают ввиду неподвижности тел, на которые эти силы действуют.

СИЛА ИНЕРЦИИ

СИЛА ИНЕРЦИИ

Векторная величина, численно равная произведению массы m материальной точки на её w и направленная противоположно ускорению. При криволинейном движении С. и. можно разложить на касательную, или тангенциальную составляющую Jt, направленную противоположно касат. ускорению wt , и на нормальную составляющую Jn, направленную вдоль нормали к траектории от центра кривизны; численно Jt=mwt, Jn=mv2/r, где v - точки, r - радиус кривизны траектории. При изучении движения по отношению к инерциальной системе отсчёта С. и. вводят для того, чтобы иметь формальную возможность составлять ур-ния динамики в форме более простых ур-ний статики (см. ). Понятие о С. и. вводится также при изучении относительного движения. В этом случае присоединение к действующим на материальную точку силам взаимодействия с др. телами С. и.- переносной Jпер и Кориолиса силы Jкор - позволяет составлять ур-ния движения этой точки в подвижной (неинерциальной) системе отсчёта так же, как и в инерциальной.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

СИЛА ИНЕРЦИИ

Векторная величина, численно равная произведениюмассы т материальной точки на её ускорение w и направленнаяпротивоположно ускорению. При криволинейном движении С. и. можно разложитьна касательную, или тангенциальную, составляющую ,направленную противоположно касат. ускорению ,и на нормальную, или центробежную, составляющую ,направленную вдоль гл. нормали траектории от центра кривизны; численно , , где v- скорость точки,- радиус кривизны траектории. При изучении движения по отношению к инерциальнойсистеме отсчёта С. и. вводят для того, чтобы иметь формальную возможностьсоставлять ур-ния динамики в форме более простых ур-ний статики (см. Д"Аламберапринцип, Кинетостатика).

Понятие о С. и. вводится также при изучении относительного движения. Вэтом случае, присоединив к действующим на материальную точку силам взаимодействияс др. телами переносную силу J nep и Кориолиса силу инерции, Тарг.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "СИЛА ИНЕРЦИИ" в других словарях:

    - (также инерционная сила) термин, широко применяемый в различных значениях в точных науках, а также, как метафора, в философии, истории, публицистике и художественной литературе. В точных науках сила инерции обычно представляет собой понятие … Википедия

    Современная энциклопедия

    Векторная величина, численно равная произведению массы m материальной точки на модуль ее ускорения? и направленная противоположно ускорению … Большой Энциклопедический словарь

    сила инерции - Векторная величина, модуль которой равен произведению массы материальной точки на модуль ее ускорения и направленная противоположно этому ускорению. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет… … Справочник технического переводчика

    Сила инерции - СИЛА ИНЕРЦИИ, векторная величина, численно равная произведению массы m материальной точки на ее ускорение u и направленная противоположно ускорению. Возникает вследствие неинерциальности системы отсчета (вращения или прямолинейного движения с… … Иллюстрированный энциклопедический словарь

    сила инерции - inercijos jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Vektorinis dydis, lygus materialiojo taško arba kūno masės ir pagreičio sandaugai; kryptis priešinga pagreičiui. atitikmenys: angl. inertia force vok. Trägheitskraft, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Векторная величина, численно равная произведению массы т материальной точки на модуль её ускорения w и направленная противоположно ускорению. * * * СИЛА ИНЕРЦИИ СИЛА ИНЕРЦИИ, векторная величина, численно равная произведению массы m материальной… … Энциклопедический словарь

    сила инерции - inercijos jėga statusas T sritis automatika atitikmenys: angl. inertial force vok. Trägheitskraft, f rus. сила инерции, f pranc. force d inertie, f … Automatikos terminų žodynas

    сила инерции - inercijos jėga statusas T sritis fizika atitikmenys: angl. inertial force vok. Trägheitskraft, f rus. сила инерции, f pranc. force d’inertie, f … Fizikos terminų žodynas

    сила инерции - величина, численно равная произведению массы тела на его ускорение и направленная противоположно ускорению; Смотри также: Сила сила трения сила света сила волочения сила внутреннего трения … Энциклопедический словарь по металлургии

Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел.

Сила инерции - сила, возникающая при разгоне или торможе­нии тела (материальной точки) и направленная в обратную сторо­ну от ускорения. Силу инерции можно измерить, она приложена к «связям» - телам, связанным с разгоняющимся или тормозящимся телом.

Рассчитано, что сила инерции равна

F ин = | m*a|

Таким образом, силы, действующие на материальные точки m 1 и m 2 (рис. 14.1), при разгоне платформы соответственно равны

F ин1 = m 1 *a ; F ин2 = m 2 *a

Разгоняющееся тело (плат­форма с массой т (рис. 14.1)) силу инерции не воспринимает, иначе разгон платформы вооб­ще был бы невозможен.

При вращательном движении (криволинейном) возникающее ускорение принято представлять в виде двух составляющих: нормального а п и касательного а t (рис. 14.2).

Поэтому при рассмотрении кри­волинейного движения могут воз­никнуть две составляющие силы инерции: нормальная и касательная

a = a t + a n ;

При равномерном движении по дуге всегда возникает нормаль­ное ускорение, касательное ускорение равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги (рис. 14.3).

Принцип кинетостатики (принцип Даламбера)

Принцип кинетостатики используют для упрощения решения ряда технических задач.

Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям).

Даламбер предложил условно прикладывать силу инерции к ак­тивно разгоняющемуся телу. Тогда система сил, приложенных к ма­териальной точке, становится уравновешенной, и можно при реше­нии задач динамики использовать уравнения статики.

Принцип Даламбера:

Материальная точка под действием активных сил, реакций связей и условно приложенной силы инерции находится в равновесии;

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Пара сил, момент пары сил
Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны. Рассмотрим систему сил (Р; Б"), образую­щих пару.

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Неинерциальной системой отсчёта называется система, движущаяся ускоренно относительно инерциальной.

Законы Ньютона справедливы только в инерциальных системах отсчета. Поэтому все рассматриваемые до сих пор вопросы относились к инерциальным системам. Однако на практике часто приходится иметь дело с неинерциальными системами отсчёта. Выясним, как должен записываться основной закон динамики в таких системах. Рассмотрим в начале движение материальной точки в инерциальной системе отсчёта:

Введём кроме неё неинерциальную систему отсчёта и договоримся первую называть неподвижной, а вторую подвижной:

На основании теоремы сложения ускорений:

Отсюда перепишем:

Мы видим, что в неинерциальной системе отсчёта ускорение точки определяется не только силой и массойm , но и характером движения самой подвижной системы отсчёта.

–фиктивные силы (они не обусловлены взаимодействием тел, а связаны с ускоренным движением неинерциальной системы относительно инерциальной) или силы инерции.

В инерциальных системах отсчёта единственной причиной ускоренного движения материальной точки являются силы, действующие со стороны материальных тел. В неинерциальных системах причиной ускоренного движения являются и силы инерции, не связанные ни с каким взаимодействием.

Необходимо подчеркнуть, что на точку, находящуюся в подвижной системе координат, силы инерции оказывают реальное действие, так как они входят в уравнение движения. Пример: движение человека в вагоне, при движении вагона с постоянной скоростью.

,

.

Пусть теперь вагон замедляет свой ход:

.

Таким образом, введение сил инерции приводит к удобной формулировке основных законов механики в относительном движении и придаёт им некоторую наглядность.

Рассмотрим два частных случая.

Пусть материальная точка совершает равномерное прямолинейное движение относительно движущейся системы координат, тогда с учетом
получим:

.

Таким образом, реальные силы уравновешиваются силами инерции.

Пусть материальная точка находится в покое по отношению к подвижной системе координат:

Тогда
,

Как уже отмечалось, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются н еинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода – так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции при этом должны быть такими, чтобы вместе с силами , обусловленными воздействием тел друг на друга, они сообщали телу ускорение , каким оно обладает в неинерциальных системах отсчета, т. е.

(1)

Так как
( – ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1) силы инерции при ускоренном поступательном движении системы отсчета;

2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;

3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим эти случаи.

1. Силы инерции при ускоренном поступательном движение системы отсчета. Пусть на тележке к штативу на нити подвешен шарик массой т . Пока тележка покоится или движется равномерно и прямолинейно, нить, удерживающая шарик, занимает вертикальное положение и сила тяжести
уравновешивается силой реакции нити .

Если тележку привести в поступательное движение с ускорением , то нить начнет отклоняться от вертикали назад до такого угла α , пока результирующая сила
не обеспечит ускорение шарика, равное . Таким образом, результирующая сила направлена в сторону ускорения тележки и для установившегося движения шарика (шарик теперь движется вместе с тележкой с ускорением ) равна
, откуда
,т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону, и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью ω (ω =const ) вокруг вертикальной оси, проходящей через его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массой m ). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчета, связанной, например, с помещением, где установлен диск, шарик равномерно вращается по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Следовательно, на него действует сила, модуль которой равен F = 2 R и направлена сила перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести
и силы натяжения нити :
. Когда движение шарика установится, то
, откуда
,т. е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от центра шарика до оси вращения диска и чем больше угловая скорость вращения ω .

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Сила , называемая центробежной силой инерции , направлена по горизонтали от оси вращения диска и её модуль равен

F ц = 2 R (3)

Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания центробежных сил инерции.

Из формулы (3) вытекает, что центробежная сила инерции, действующая на тела во вращающихся системах отсчета в направлении радиуса от оси вращения, зависит от угловой скорости вращения ω системы отсчета и радиуса R , но не зависит от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Пусть шарик массой т движется с постоянной скоростью вдоль радиуса равномерно вращающегося диска (). Если диск не вращается, то шарик, направленный вдоль радиуса, движется по радиальной прямой и попадает в точку А, если же диск привести во вращение в направлении, указанном стрелкой, то шарик катится по кривой ОВ , причем его скорость относительно диска изменяет свое направление. Это возможно лишь тогда, если на шарик действует сила, перпендикулярная скорости .

Для того чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, используем жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения равномерно и прямолинейно со скоростью .

При отклонении шарика стержень действует на него с некоторой силой . Относительно диска (вращающейся системы отсчета) шарик движется равномерно и прямолинейно, что можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной скорости . Эта сила называется кориолисовой силой инерции .

Можно показать, что сила Кориолиса

(4)

Вектор перпендикулярен векторам скорости тела и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например, относительно Земли. Поэтому действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север, то действующая на него сила Кориолиса, как это следует из выражения (4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, и т. д. Аналогично можно показать, что в южном полушарии сила Кориолиса, действующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Благодаря силе Кориолиса падающие на поверхность Земли тела отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано поведение маятника Фуко, явившееся в свое время одним из доказательств вращения Земли. Если бы этой силы не было, то плоскость колебаний качающегося вблизи поверхности Земли маятника оставалась бы неизменной (относительно Земли). Действие же сил Кориолиса приводит к вращению плоскости колебаний вокруг вертикального направления.

,

где силы инерции задаются формулами (2) – (4).

Обратим еще раз внимание на то, что силы инерции вызываются не взаимодействием тел, а ускоренным движением системы отсчета . Поэтому они не подчиняются третьему закону Ньютона, так как если на какое-либо тело действует сила инерции, то не существует противодействующей силы, приложенной к данному телу. Два основных положения механики, согласно которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, в системах отсчета, движущихся с ускорением, одновременно не выполняются.

Для любого из тел, находящихся в неинерциальной системе отсчета, силы инерции являются внешними; следовательно, здесь нет замкнутых систем. Это означает, что в неинерциальных системах отсчета не выполняются законы сохранения импульса, энергии и момента импульса. Таким образом, силы инерции действуют только в неинерциальных системах. В инерциальных системах отсчета таких сил не существует.

Возникает вопрос о «реальности» или «фиктивности» сил инерции. В ньютоновской механике, согласно которой сила есть результат взаимодействия тел, на силы инерции можно смотреть как на «фиктивные», «исчезающие» в инерциальных системах отсчета. Однако возможна и другая их интерпретация. Так как взаимодействия тел осуществляются посредством силовых полей, то силы инерции рассматриваются как воздействия, которым подвергаются тела со стороны каких-то реальных силовых полей, и тогда их можно считать «реальными». Независимо от того, рассматриваются ли силы инерции в качестве «фиктивных» или «реальных», многие явления, о которых упоминалось выше, объясняются с помощью сил инерции.

Силы инерции, действующие на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому в «поле сил инерции» эти тела движутся совершенно одинаково, если только одинаковы начальные условия. Тем же свойством обладают тела, находящиеся под действием сил поля тяготения.

При некоторых условиях силы инерции и силы тяготения невозможно различить. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы. Этот принцип является основой общей теории относительности.

Для того чтобы второй закон Ньютона выполнялся в неинерциальных системах отсчета в дополнение к силам, которые действуют на тела вводят силы инерции.

Определение и формула силы инерции

ОПРЕДЕЛЕНИЕ

Силой инерции называют силу, которая вводится только потому, что система координат, в которой происходит рассмотрение движения тел, является неинерциальной.

Возникновение сил инерции не связано с действием каких-либо тел. Напомним, что неинерциальными системами отсчета являются любые системы, движущейся с ускорением относительно инерциальных систем.

Третий закон Ньютона для сил инерции не выполняется.

Пусть ускорение тела относительно инерциальной системы отсчета равно . Обычно такое ускорение называют абсолютным, при этом ускорение тела относительно неинерциальной системы отсчета носит название относительного (). Второй закон Ньютона для инерциальной системы отсчета запишем как:

где - равнодействующая сила, приложенная к телу массы m. В неинерциальной системе отсчета:

поскольку:

Добавим к правой части выражения (2) силы инерции, так чтобы выполнялся второй закон Ньютона в неинерциальной системе отсчета:

В таком случае получим, что сила инерции равна:

Формула (5) для силы инерции дает верное описание движения в неинерциальной системе отсчета. При этом нахождение разности относительного и абсолютного ускорений является кинематической задачей. Ее можно решить, если известен характер движения неинерциальной системы отсчета относительно инерциальной.

Системы отсчета, движущиеся прямолинейно с постоянным ускорением

Система отсчета, которая перемещается прямолинейно с постоянным ускорением - это простейший случай неинерциальной системы. Рассмотрим неинерциальную систему отсчета, которая движется прямолинейно с постоянным ускорением (переносное ускорение) относительно инерциальной системы отсчета. Тогда:

Согласно формуле (5) сила инерции равна:

Вращающаяся система отсчета

Рассмотрим систему отсчета, вращающуюся относительно неподвижной оси с постоянной скоростью . Для тела находящегося в состоянии покоя в такой системе отсчета формулу для силы инерции можно записать как:

где - радиус-вектор, по величине равный расстоянию от оси вращения до рассматриваемого тела, направленный от центра к телу. Сила инерции (8) называется центробежной силой инерции.

Все тела на поверхности Земли испытывают действие центробежной силы инерции.

Отметим, что всякую задачу можно решить в инерциальной системе отсчета. Применение неинерциальных систем продиктовано соображениями удобства применения неинерциальных систем.

Примеры решения задач по теме «Сила инерции»

ПРИМЕР 1

Задание Какова сила нормального давления тела (вес) на поверхность Земли, если тело неподвижно, имеет массу m. Находится на широте . Радиус Земли считать равным R.
Решение Сделаем рисунок.

Свяжем систему отсчета с Землей. На груз в этой системе отсчета действуют силы: сила тяжести (); сила реакции опоры (); сила трения покоя (). Кроме этих сил, так как систему отсчета связанную с Землей в нашем случае инерциальной считать не будем, действует центробежная сила инерции (). Формулу для расчета силы инерции возьмем:

где радиус траектории (окружности) по которой движется груз.

Систему координат выберем так, что ее начало совпадет с центром тела, ось Y будет перпендикулярна поверхности Земли, ось X - касательная к поверхности Земли (см. рис.1). Так как тело не движется относительно Земли, то второй закон Ньютона запишем как:

В проекциях на оси X и Y выражения (1.2), учитывая (1.1) имеем:

Так как вес тела (P) по величине равен (N), выразим его из первого уравнения системы (1.3), получим:

Ответ