Задание 9 огэ физика. Онлайн тесты гиа по физике. Изменения в демонстрационных вариантах по физике

Друзья, в каждом языке есть свои основные правила по грамматике, орфографии, синтаксису и т. д. Английский язык — не исключение. На страницах нашего сайта вы можете найти подробное описание каждого раздела грамматики, правила чтения, синтаксические правила, речевые обороты английского языка.

В данной статье мы не будем подробно останавливаться на каждом разделе языка.

Сегодняшний наш материал предназначен именно для начинающих в изучении языка, для тех, кто взялся за английский с нуля. Мы хотим представить вам самые основные, самые важные и необходимые правила английского языка, с которыми вы будете сталкиваться повсеместно, осваивая этот язык. Если вы готовы, то 15 основных правил ждут вас!

Эти правила необходимо знать!

Итак, дорогие читатели, сейчас вы познакомитесь с основными правилами английского из разных разделов языка. Они касаются и грамматики, и речи, и синтаксиса и многого другого. Все, что вам нужно — это читать правила внимательно и вдумчиво, обращать внимание на примеры и, конечно же, запоминать! По желанию, можете переписать эту информацию в вашу тетрадь по английскому или в блокнот. Таким образом, вы всегда сможете напомнить себе то, что вам нужно в том или ином упражнении.

Правило № 1

После модальных глаголов частица to не употребляется. Мы говорим:

  • I must learn English modal verbs. — Я должен выучить английские модальные глаголы.
  • You should listen to your parents. — Тебе следует слушать своих родителей.
  • May I take your notebook till Sunday? — Могу я взять твой ноутбук до воскресенья?

И мы ни в коем случае не говорим: must to learn; should to listen; may to take и т. д.

Правило № 2

Нельзя употреблять определенный/неопределенный артикль с местоимением:

  • I love my mother . — Я люблю мою маму .
  • Where is your friend now? — Где сейчас твой друг ?
  • Yesterday I met Tom and his wife . — Вчера я встретил Тома и его жену.

Нельзя сказать: the my mother или my the mother ; the your friend или your the friend . Сразу видно, как это абсурдно смотрится, а уж тем более, звучит. Прямо слух режет!

Правило № 3

Наречия английского языка (на вопрос «как?») образуются по схеме: прилагательное + окончание ly:

  • Perfect — perfectly — отлично, прекрасно, замечательно
  • Quick — quickly — быстро, проворно
  • Rapid — rapidly — быстро
  • Quiet — quietly — тихо
  • Nice — nicely — мило
  • Easy — easily — легко
  • Beautiful — beautifully — красиво


  • He entered the room quietly . — Он тихо вошел в комнату .
  • Tom did his homework perfectly fine! — Том сделал свою домашнюю работу превосходно (неимоверно хорошо)!
  • Sue looks beautifully today. — Сью сегодня выглядит красиво.

Правило № 4

Используйте Present Simple , после союзов if, as soon as, before, when, till, until, after, in case в предложениях времени и условия, относящихся к будущему:

  • When I finish school, I will go to my grandparents in the countryside. — Когда я закончу школу , я поеду к моим дедушке и бабушке в деревню .
  • After you study your family tree, you will find out where you descend from. — После того , как ты изучишь генеалогическое древо твоей семьи , ты обнаружишь , от кого ты происходишь .
  • Your elder brother will certainly help you if you ask — Твой старший брат обязательно поможет тебе , если ты его попросишь .

Правило № 5

Порядок слов в английском предложении таков:

Подлежащее + сказуемое + прямое дополнение + косвенное дополнение + обстоятельство

Subject + predicate + direct object + indirect object + adverbal modifier

  • I sent you a letter last week. — Я послал тебе письмо на прошлой неделе.
  • I saw Mike in the club. — Я видел Майка в клубе .
  • It was sunny yesterday. — Вчера было солнечно .

В русском предложении допускаются вольности, и в нем нет определенного порядка слов, все зависит от эмоции, вложенной в него. В английском предложении все четко и строго.

Правило № 6

Фразовые глаголы (глагол + предлог) английского языка имеют свое, отдельное значение и свой перевод. Например:

To look — смотреть; to look for — искать

To put — ставить, класть; to put on — надеть

Сравните:

  • Put the plates on the table, please. — Поставь тарелки на стол , пожалуйста .
  • It is cold outside; put on your coat. — На улице холодно , надень пальто .

Правило № 7

Самое общее правило для определенного и неопределенного артиклей английского языка: неопределенный артикль ставится там, где ничего не известно о предмете; определенный артикль употребляется там, где что-то известно о предмете.


  • I see a The girl walking down the street is very beautiful. — Я вижу девушку . Девушка, идущая по улице, очень красивая.

Правило № 8

Окончание - ed характерно для прошедших времен только правильных глаголов. У неправильных глаголов своя форма для каждого прошедшего времени. Например:

Look — looked НО! Bring — brought — brought

Правило № 9

В английском языке существуют 4 типа вопросов:

We go to the theatre every Saturday. — Мы ходим в театр каждую субботу .

  • General (общий): Do we go to the theatre every Saturday? — Мы ходим в театр каждую субботу ?
  • Special (специальный): Where do we go every Saturday? — Куда мы ходим каждую субботу ?
  • Alternative (альтернативный): Do we go to the theatre every Saturday or every Sunday? — Мы ходим в театр каждую субботу или каждое воскресенье ?
  • Disjunctive (разделительный): We go to the theatre every Saturday, don’t we? — Мы ходим в театр каждую субботу , не так ли ?

Правило № 10

Чтобы составить безличное предложение, понадобится местоимение It :

  • It is cold today. — Сегодня холодно .
  • It is morning. — Утро.
  • It is difficult to translate this text. — Этот текст сложно перевести .

Правило № 11

После союзов as if, as though (как будто, будто, как если бы, словно) в условном наклонении, глагол to be в 3-ем лице единственного числа приобретает форму were :

  • She speaks so proudly as if she weren’t guilty. — Она говорит так гордо, словно и не виновата.
  • Tom looks as though he were rich. — Том выглядит так , будто он богат .

Правило № 12

Условно-побудительные предложения в 1-м и 3-м лице образуются с помощью слова Let :

  • Let me have a look at these pictures. — Позвольте мне взглянуть на эти фотографии.
  • Let him sleep, he is tired. — Дайте ему поспать , он устал .

Правило № 13

Все знают, что слово many употребляется с исчисляемыми существительными, а слово much — с неисчисляемыми. Но, если вдруг, вы затрудняетесь, сомневаетесь, забыли правило или не понимаете, какое существительное перед вами, смело используйте сочетание слов a lot of . Оно подходит к обоим видам существительных.

  • Many birds — a lot of birds
  • Much sugar — a lot of sugar

Правило № 14

Множество английских слов — полисемичны, то есть могут иметь несколько значений. Это зависит от контекста и смысла предложения. Чтобы точнее понять перевод, следует обратиться к словарю и уточнить, в каком контексте употреблено слово.

  • To shoot — снимать на видео; to shoot — стрелять
  • Country — страна; country — село, деревня

Правило № 15

Глагол do может заменять основной глагол в предложении. Например.

Государственная итоговая аттестация 2019 года по физике для выпускников 9 класса общеобразовательных учреждений проводится с целью оценки уровня общеобразовательной подготовки выпускников по данной дисциплине. В заданиях проверяются знания следующих разделов физики:

  1. Физические понятия. Физические величины, их единицы и приборы для измерения.
  2. Механическое движение. Равномерное и равноускоренное движение. Свободное падение. Движение по окружности. Механические колебания и волны.
  3. Законы Ньютона. Силы в природе.
  4. Закон сохранения импульса. Закон сохранения энергии. Механическая работа и мощность. Простые механизмы.
  5. Давление. Закон Паскаля. Закон Архимеда. Плотность вещества.
  6. Физические явления и законы в механике. Анализ процессов.
  7. Механические явления.
  8. Тепловые явления.
  9. Физические явления и законы. Анализ процессов.
  10. Электризация тел.
  11. Постоянный ток.
  12. Магнитное поле. Электромагнитная индукци.
  13. Электромагнитные колебания и волны. Элементы оптики.
  14. Физические явления и законы в электродинамике. Анализ процессов.
  15. Электромагнитные явления.
  16. Радиоактивность. Опыты Резерфорда. Состав атомного ядра. Ядерные реакции.
  17. Владение основами знаний о методах научного познания.
Даты сдачи ОГЭ по физике 2019 года:
11 июня (вторник), 14 июня (пятница) .
Изменения структуры и содержания экзаменационной работы 2019 года по сравнению с 2018 годом отсутствуют .
В данном разделе вы найдёте онлайн тесты, которые помогут вам подготовиться к сдаче ОГЭ (ГИА) по физике. Желаем успехов!

Стандартный тест ОГЭ (ГИА-9) формата 2019-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2019-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



Стандартный тест ОГЭ (ГИА-9) формата 2017-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2017-го года по физике состоит из двух частей. Первая часть содержит 21 задание с кратким ответом, вторая часть содержит 4 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. 21 задание). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 16. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



,
один правильный ответ


Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы:
,
В тесте 18 вопросов, нужно выбрать только один правильный ответ

В задании №9 ЕГЭ по физике необходимо продемонстрировать знания в области такого раздела физики, как термодинамика. Работа идеального газа, КПД тепловых машин, циклы - вот, что ждет нас в девятом задании.

Теория к заданию № 9 ЕГЭ по физике

Работа идеального газа

Пусть газ находится в сосуде, в котором есть поршень. Работа равна произведению силы на перемещение: A=F(h 1 – h 2).

Сила давления на стенки сосуда и поршень равна произведению давления газа p на площадь поверхности S. Тогда работа газа равна

А=pS(h 1 – h 2) = p(Sh 1 – Sh 2) =p(V 1 – V 2)

Следовательно, газ выполняет работу, если изменяется его объём.

При постоянном давлении работа –это произведение давления и разности объёмов.

Молекулы газа обладают кинетической энергией и при сильном сжатии газа ведут себя как упругие тела. Это означает, что обладают ещё и потенциальной энергией. Кинетическая и потенциальная энергия молекул, из которых состоит газ, в сумме составляют внутреннюю энергию газа U.

Если изменять одновременно температуру Т и давление р с объёмом V, разобраться в закономерностях изменения состояния газа тяжело.

Газовые процессы

  1. Изобарный процесс происходит при постоянном давлении, т.е. p = const.
    При нем теплота Q затрачивается на увеличение объёма газа и повышение температуры.
  2. Изохорный процесс происходит при поддержании постоянного объема, т.е. при V = const. Работа в данном случае не выполняется, а теплота, получаемая газом, затрачивается на изменение внутренней энергии.
  3. Изотермический проходит при постоянной температуре (T=const). В этом случае теплота идёт на изменение объёма, то есть на выполнение работы. При изотермическом процессе Q = А.

Графики газовых процессов изображены на рисунках ниже.


Количество теплоты, которое необходимо затратить при нагревании тела массой т, на Δt градусов, определяется формулой Q=cmΔt. Здесь с – удельная теплоемкость материала, из которого изготовлено тело.

КПД тепловой машины

Здесь Q 1 – количество теплоты, полученное от нагревателя, Q 2 – количество теплоты,которое отдано холодильнику, A- полезная работа.

Разбор типовых заданий №9 ЕГЭ по физике

Демонстрационный вариант 2018

На ТV-диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ получил количество теплоты, равное 50 кДж. Какую работу совершил газ в этом процессе, если его масса не меняется?

Алгоритм решения:
  1. Анализируем условие задачи и график газового процесса.
  2. Устанавливаем, какой параметр не изменяется.
  3. Определяем работу,
Решение:

1. По условию задачи газ получил 50 кДж теплоты. После этого газ выполнил работу. Процесс, при котором выполнялась работа изображен на графике. Легко видно, что процесс, изображенный на рисунке, является изотермическим.

2. Температура при нем постоянная.

3. В данном случае все полученное количество теплоты уходит на выполнение работы. То есть А = Q. Следовательно, А = 50 кДж

Первый вариант задания (Демидова, №1)

На рТ-диаграмме показан процесс изменения состояния 4 моль идеального газа. Внутренняя энергия газа увеличилась на 40 кДж. Какую работу совершил газ в этом процессе?

Алгоритм решения:
  1. Анализируем задание и график, на котором изображен газовый процесс.
  2. Устанавливаем вид процесса.
  3. Определяем работу, которая выполняется в данном случае.
  4. Записываем ответ.
Решение:

1. Из рисунка видно, что давление прямо пропорционально зависит от температуры, т.е. p=αT , Здесь α – некоторый коэффициент. Согласно уравнению Менделеева – Клапейрона имеем:

2. Значит, процесс изохорный. При нем объем не меняется.

3. Работа газа всегда связана расширением или сжатием газа, чего в данном случае не происходит. Значит, работа при этом не производится. Она равна 0.

Второй вариант задания (Демидова, №8)

Кусок алюминия массой 5 кг нагрели от 20 °С до 100 °С. Какое количество теплоты было затрачено на его нагрев?

Алгоритм решения:
  1. Записываем формулу для определения количества теплоты.
  2. Вычисляем количество теплоты, подставив данный в условии значения величин.
  3. Записываем ответ.
Решение:

1. Количество теплоты Q, которое затрачивается на нагревание куска определяется по формуле: Q=cmΔt.

2. Масса тела по условию равна т= 5 кг, теплоемкость алюминия равна с = 900, а разность температур Δt = 100 0 -20 0 = 80 0 .

Имеем: Q= 0∙5∙80= 360000Дж =360 кДж.

Третий вариант задания (Демидова, №28)

Тепловая машина с КПД 40 % совершает за цикл полезную работу 60 Дж. Какое количество теплоты машина получает за цикл от нагревателя?

Алгоритм решения:
  1. Записываем формулу КПД для тепловой машины.
  2. Подставляем числовые значения и вычисляем требуемое количество теплоты.
  3. Записываем ответ.
Решение:

1. КПД тепловой машины вычисляется по формуле:

где Q1 – количество теплоты, которое получает тепловая машина от нагревателя; А – полезная работа. По условию A = 60 Дж. А коэффициент полезного действия равен 40%= 0,4. Из формулы получаем.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Подготовка к ЕГЭ по физике: примеры, решения, объяснения

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t . Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.


Решение. Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v = 10 м/с, т.е.

S = (30 + 20) с 10 м/с = 250 м.
2

Ответ. 250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V груза на ось, направленную вверх, от времени t . Определите модуль силы натяжения троса в течение подъема.



Решение. По графику зависимости проекции скорости v груза на ось, направленную вертикально вверх, от времени t , можно определить проекцию ускорения груза

a = v = (8 – 2) м/с = 2 м/с 2 .
t 3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T mg = ma (2);

из формулы (2) модуль силы натяжения

Т = m (g + a ) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ . 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F ?



Решение. Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х . Проекция силы F положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F cosα – F тр = 0; (1) выразим проекцию силы F , это F cosα = F тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N = F cosα V (3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N = 16 Н · 1,5 м/с = 24 Вт.

Ответ. 24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x груза от времени t . Определите, чему равна масса груза. Ответ округлите до целого числа.


Решение. Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х от времени t , определим период колебаний груза. Период колебаний равен Т = 4 с; из формулы Т = 2π выразим массу m груза.


= T ; m = T 2 ; m = k T 2 ; m = 200 H/м (4 с) 2 = 81,14 кг ≈ 81 кг.
k 4π 2 4π 2 39,438

Ответ: 81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два верных утверждения и укажите в ответе их номера.


  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h , нужно вытянуть участок веревки длиной 3h .
  4. Для того чтобы медленно поднять груз на высоту h h .

Решение. В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h , нужно вытянуть участок веревки длиной 2h .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ. 45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.


Решение. Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a , действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

V = m .
p

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V ж < V a . Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F упр + F a mg = 0; (1) Выразим силу натяжения F упр = mg F a (2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a = ρgV п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V ж < V a , поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ. 13.

Брусок массой m соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a , модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg cosα

4) sinα – a
g cosα

Решение. Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.


Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y = N ; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y = mg cosα ; проекция вектора ускорения a y = 0, так как вектор ускорения перпендикулярен оси. Имеем N mg cosα = 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N = mg cosα (3). Запишем проекции на ось OX.

На ось OX: проекция силы N равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x = mg sinα (4) из прямоугольного треугольника. Проекция ускорения положительная a x = a ; Тогда уравнение (1) запишем с учетом проекции mg sinα – F тр = ma (5); F тр = m (g sinα – a ) (6); Помним, что сила трения пропорциональна силе нормального давления N .

По определению F тр = μN (7), выразим коэффициент трения бруска о наклонную плоскость.

μ = F тр = m (g sinα – a ) = tgα – a (8).
N mg cosα g cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ. A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение. Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T = t °С + 273, объем V = 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P = 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ. 48 г.

Задание 9. Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение. Во-первых, газ одноатомный число степеней свободы i = 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q = 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U + A г; (1) выразим работу газа A г = –∆U (2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ. 25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение. Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ 1 = 10 % ; φ 2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P 2 = φ 2 = 35 = 3,5
P 1 φ 1 10

Ответ. Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение. Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ. 14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение. Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑ n U i = 0 (1);
i = 1

где ∆U – изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ. 23.

Протон p , влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)


Решение. На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ. от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение. Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d = 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d – расстояние между пластинами.

Выразим напряжение U = E · d (4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q = C · Ed = 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ. 20 мкКл.


Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение. В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

sinα = n 2 ,
sinβ n 1

где n 2 – абсолютный показатель преломления стекла, среда куда идет свет; n 1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n 1 = 1. α – угол падения луча на поверхность стеклянного полуцилиндра, β – угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t 0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t так, как показано на графике.


Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t = 0,1 с t = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение. По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t = 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф = (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ. 13.


По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение. Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t = 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I = 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

| Ɛ | = 2 ·10 –6 В, или 2 мкВ.

Ответ. 2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n 2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


Решение. Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n 2 = 1,77; n 1 = 1 (воздух).

Запишем закон преломления

sinβ = sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ . 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x + y ;

Решение. При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x = 1; y = 2

Ответ. 1 – α -частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение. Импульс второго фотона больше импульса первого фотона по условию значит можно представить p 2 = p 1 + Δp (1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E = mc 2 (1) и p = mc (2), тогда

E = pc (3),

где E – энергия фотона, p – импульс фотона, m – масса фотона, c = 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E 2 = p 2 = 8,18;
E 1 p 1

Ответ округляем до десятых и получаем 8,2.

Ответ. 8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение. Позитронный β – распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ. 21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение. Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d sinφ = k λ (1),

где d – период дифракционной решетки, φ – угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ – длина световой волны, k – целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ. 42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение. Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U = I R (3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ. 13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение. Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T = 2π (1);

l – длина математического маятника; g – ускорение свободного падения.

По условию

Выразим из (3) g п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ. 14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В = 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение. Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F А = I LB sinα ;

F А = 0,6 Н

Ответ. F А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение. Энергия магнитного поля катушки рассчитывается по формуле

W м = LI 2 (1);
2

По условию W 1 = 120 Дж, тогда W 2 = 120 + 5760 = 5880 Дж.

I 1 2 = 2W 1 ; I 2 2 = 2W 2 ;
L L

Тогда отношение токов

I 2 2 = 49; I 2 = 7
I 1 2 I 1

Ответ. Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.


Решение. Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ. Загорится вторая лампа.

Алюминиевая спица длиной L = 25 см и площадью поперечного сечения S = 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l = 10 см. Найти силу F , с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ а = 2,7 г/см 3 , плотность воды ρ в = 1,0 г/см 3 . Ускорение свободного падения g = 10 м/с 2

Решение. Выполним поясняющий рисунок.


– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m и модуль архимедовой силы выражаются следующим образом: m = SL ρ a (1);

F a = Sl ρ в g (2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М (Т ) = 0 – момент силы натяжения; (3)

М (N) = NL cosα – момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL cosα + Sl ρ в g (L l ) cosα = SL ρ a g L cosα (7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F д с которой спица давит на дно сосуда запишем N = F д и из уравнения (7) выразим эту силу:

F д = [ 1 L ρ a – (1 – l )l ρ в ]Sg (8).
2 2L

Подставим числовые данные и получим, что

F д = 0,025 Н.

Ответ. F д = 0,025 Н.

Баллон, содержащий m 1 = 1 кг азота, при испытании на прочность взорвался при температуре t 1 = 327°С. Какую массу водорода m 2 можно было бы хранить в таком баллоне при температуре t 2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M 1 = 28 г/моль, водорода M 2 = 2 г/моль.

Решение. Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V – объем баллона, T 1 = t 1 + 273°C. По условию водород можно хранить при давлении p 2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m 2 = m 1 M 2 T 1 (5).
5 M 1 T 2

После подстановки числовых данных m 2 = 28 г.

Ответ. m 2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I m = 5 мА, а амплитуда напряжения на конденсаторе U m = 2,0 В. В момент времени t напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение. В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C U 2 + L I 2 = L I m 2 (1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

C = I m 2 (4).
L U m 2

Подставим (4) в (3). В результате получим:

I = I m (5)

Таким образом, сила тока в катушке в момент времени t равна

I = 4,0 мА.

Ответ. I = 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение. Сделаем поясняющий рисунок


α – угол падения луча;

β – угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

sinβ = sinα (3)
n 2

Рассмотрим прямоугольный ΔАDВ. В нем АD = h , тогда DВ = АD

tgβ = h tgβ = h sinα = h sinβ = h sinα (4)
cosβ

Получаем следующее выражение:

АС = 2 DВ = 2h sinα (5)

Подставим числовые значения в полученную формулу (5)

Ответ. 1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В. и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я. Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.