Последовательность основных видов деятельности зависимости между величинами. Тема: «Моделирование зависимостей между величинами. Технологии информационного моделирования

183. Легко доказать, что середина отрезка, соединяющего центры оснований призмы, является центром вписанного и описанного шаров. Радиус круга, вписанного в основание, равен радиусу вписанного шара. Пусть r -радиус вписанного шара, R - радиус описанного шара. Рассмотрим прямоугольный треугольник, вершинами которого являются одна из вершин основания, центр основания и центр шаров. Имеем R 2 = r 2 + r 2 1 , где . Отсюда

Отношение объема описанного шара к объему вписанного шара равно

184. Радиусы описанного и вписанного шаров равны отрезкам высоты тетраэдра, на которые она делится общим центром этих шаров. Легко обнаружить, что отношение этих отрезков равно 3:1.

В самом деле, из подобных треугольников BQO и ВРK (рис. 188) имеем:

Так как поверхности шаров относятся как квадраты их радиусов, то искомое отношение равно 9.

______________________________________________

185. Объемы правильных, тетраэдров относятся как кубы радиусов вписанных в них шаров. Так как шар, вписанный в больший тетраэдр, является описанным вокруг меньшего тетраэдра, то отношение упомянутых радиусов вписанных шаров (см. решение задачи 184) равно 3:1. Следовательно, искомое отношение объемов равно 3 3 = 27.

______________________________________________

186. Допустим, что задача разрешима. Проведем плоскость A 1 B 1 C 1 (см. рис. 189, а), касающуюся меньшего шара и параллельную основанию AВС данного тетраэдра. Тетраэдр SA 1 B 1 C 1 описан около шара радиуса r . Легко найти, что высота его SQ 1 = 4r (см. задачу 184).

Пусть длина ребра тетраэдра SABC равна х . Тогда отрезок AQ = x √ 3 / 3 , а высота SQ = x √ 6 / 3 .

Решив квадратное уравнение, найдем

x 1,2 = r √6 ± R 2 - 3r 2 .

В этой формуле следует взять лишь корень со знаком плюс, ибо SA во всяком случае больше, чем 3r , а 3r > r √6 .

Очевидно, что задача возможна при условии R > √3 r

______________________________________________

187. Пусть A 1 B 1 C 1 D 1 E 1 F 1 - правильный шестиугольник, полученный в сечении куба. Задача сводится к определению радиуса шара, вписанного в правильную шестиугольную пирамиду SA 1 B 1 C 1 D 1 E 1 F 1 (рис. 190).

Сторона основания пирамиды равна a √ 2 / 2 , а высота равна a √ 3 / 2

Пользуясь тем, что радиус шара, вписанного в пирамиду, равен утроенному объему пирамиды, деленному на ее полную поверхность (см. формулу (1) в решении задачи ), находим:

Следовательно, искомое отношение равно

______________________________________________

188. Пусть О - центр сферы, а AS, BS и CS - данные хорды. Очевидно, что треугольник ABC равносторонний (рис. 191).

Легко видеть также, что перпендикуляр SO 1 на плоскость ABC при продолжении проходит через центр сферы О, так как точка O 1 является центром круга, описанного около /\ ABC.

Обозначим после этих замечаний через d искомую длину хорд. Из треугольника SAB находим:

АВ = 2d sin α / 2

и, следовательно,

Вычисляя двумя способами площадь равнобедренного треугольника SOA, получаем:

______________________________________________

189. Радиус вписанного шара r мы найдем по формуле (ср. формулу (1) в решении задачи )

где V-объем пирамиды, a S - ее полная поверхность.

Найдем сначала объем пирамиды. Заметим для этого, что прямоугольные треугольники BSC и BSA (рис. 192) равны по равным гипотенузам и общему катету. Ввиду этого прямоугольный треугольник ASC является равнобедренным. Так как

AS = CS = √a 2 - b 2 ,

то, следовательно,

______________________________________________

190. Обозначим через r радиус вписанного шара, а через R радиус описанного шара.

Рассмотрим сначала треугольник SFE, одна из сторон которого SF является высотой пирамиды, а другая SE-высотой боковой грани (рис. 193, а). Пусть О-центр вписанного шара. Из треугольников SFE и OFE (рис. 193, б) имеем:

FE= r ctg φ / 2 ,

SF = r ctg φ / 2 tg φ .

DF = EF√2

Обращаясь к рис. 193, в, где изображено сечение, проведенное через ось пирамиды и ее боковое ребро, мы легко найдем:

DO 1 2 = O 1 F 2 + DF 2

R 2 = (SF - R) 2 + DF 2 .

Так как R = 3r , то, подставляя сюда найденные ранее выражения для SF и DF, получаем уравнение относительно φ :

или после упрощения

6 tg φ / 2 tg φ = 2 + tg 2 φ .

7z 4 -6z 2 + l = 0.

Так как z > 0, то возможны лишь два ответа:

______________________________________________

191. Всего получается 6 двуугольников (по числу ребер) и 4 треугольника (рис. 194).

Обозначим через S 1 площадь каждого из треугольников и через S 2 -площадь каждого из двуугольников. Имеем:

4S 1 + 6S 2 = 4π R 2 . (1)

Пусть S 0 - сумма площадей одного треугольника и трех прилежащих к нему двуугольников. S 0 есть площадь сферического сегмента, отсеченного плоскостью грани тетраэдра. Эта площадь равна 2π Rh , где h - высота сегмента. Так как высота тетраэдра делится центром сферы в отношении 3:1 (см. задачу 184), то

H = R + 1 / 3 R = 4 / 3 R

откуда находим h = 2R - 4 / 3 R= 2 / 3 R.

S 1 + 3S 2 = 2π R 2 / 3 R = 4 / 3 π R 2 . (2)

Решив систему, состоящую из уравнений (1) и (2), относительно неизвестных S 1 и S 2 , получаем:

S 1 = 2 / 3 π R 2 , S 2 = 2 / 9 π R 2

______________________________________________

192. Пусть R-радиус основания конуса, α - угол между осью конуса и образующей, r - радиус вписанного шара. В осевом сечении конуса имеем равнобедренный треугольник ABC (рис. 195).

Радиус круга, вписанного в этот треугольник, равен радиусу r вписанного в конус шара. Пусть О - центр круга, / ОСА = β .

Тогда очевидно, что tg β = r / R . Но по условию задачи

Отсюда r / R = 1 / √ 3 и, следовательно, β = π / 6 . Так как, кроме того, α +2β = π / 2 , то α = π / 6 . Следовательно, искомый угол 2α = π / 3 .

______________________________________________

193. Пусть r - радиус полусферы, R - радиус основания конуса, l -образующая конуса, α - угол между осью конуса и образующей.

По условию задачи имеем

Введем в это равенство угол α . Для этого рассмотрим равнобедренный /\ ABC (рис. 196), получающийся в осевом сечении конуса. Из /\ ABC находим

R = l sin α , r = R cos α = l sin α cos α .

Чтобы легко справиться с решением задач на шар, вписанный в пирамиду, полезно разобрать небольшой теоретический материал.

Шар вписан в пирамиду (или сфера вписана в пирамиду) — значит, шар (сфера) касаются каждой грани пирамиды. Плоскости, содержащие грани пирамиды, являются касательными плоскостями шара. Отрезки, соединяющие центр шара с точками касания, перпендикуляры к касательным плоскостям. Их длины равны радиусу шара. Центр вписанного в пирамиду шара — точка пересечения бисекторных плоскостей двугранных углов при основании (то есть плоскостей, делящих эти углы пополам).

Чаще всего в задачах речь идет о шаре, вписанном в правильную пирамиду. Шар можно вписать в любую правильную пирамиду. Центр шара в этом случае лежит на высоте пирамиды. При решении задачи удобно провести сечение пирамиды и шара плоскостью, проходящей через апофему и высоту пирамиды.

Если пирамида четырехугольная или шестиугольная, сечение представляет собой равнобедренный треугольник, боковые стороны которого — апофемы, а основание — диаметр вписанной в основание окружности.

Если пирамида треугольная или пятиугольная, достаточно рассмотреть лишь часть этого сечения — прямоугольный треугольник, катеты которого — высота пирамиды и радиус вписанной в основание пирамиды окружности, а гипотенуза — апофема.

В любом случае, в итоге приходим к рассмотрению соответствующего прямоугольного треугольника и других связанных с ним треугольников.

Итак, в прямоугольном треугольнике SOF катет SO=H — высота пирамиды, катет OF=r — радиус вписанной в основание пирамиды окружности, гипотенуза SF=l — апофема пирамиды. O1- центр шара и, соответственно, окружности, вписанной в треугольник, полученный в сечении (мы рассматриваем его часть). Угол SFO — линейный угол двугранного угла между плоскостью основания и плоскостью боковой грани SBC. Точки K и O — точки касания, следовательно, O1K перпендикулярен SF. OO1=O1K=R — радиусу шара.

Прямоугольные треугольники OO1F и KO1F равны (по катетам и гипотенузе). Отсюда KF=OF=r.

Прямоугольные треугольники SKO1 и SOF подобны (по острому углу S), откуда следует, что

В треугольнике SOF применим свойство биссектрисы треугольника:

Из прямоугольного треугольника OO1F

При решении задач на шар, вписанный в правильную пирамиду, будет полезным еще одно рассуждение.

Теперь найдем отношение объема пирамиды к площади ее поверхности.

24.02.2019, 16:51 Моделирование зависимостей между величинами Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.
Cо всякой величиной связаны три основных свойства:
- имя,
- значение,
- тип.
Имя величины может быть смысловым и символическим . Пример смыслового имени - «давление газа», символическое имя для этой же величины - Р.
Если значение величины не изменяется, то она называется постоянной величиной или константой . Пример константы - число Пифагора ¶=3,14259... . Величина, значение которой может меняться, называется переменной . Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.
Тип определяет множество значений, которые может принимать величина. Основные типы величин : числовой, символьный, логический. Размерности определяют единицы, в которых представляются значения величин. Например, t (с) - время падения; Н (м) - высота падения.
Математические модели
Если зависимость между величинами удается представить в математической форме, то это математическая модель .
Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.
Это пример зависимости, представленной в функциональной форме. Эту зависимость называют корневой (время пропорционально квадратному корню высоты).
В более сложных задачах математические модели представляются в виде уравнений или систем уравнений.

Табличные и графические модели
Это другие, не формульные, способы представления зависимостей между величинами. Например, мы решили проверить закон свободного падения тела экспериментальным путем.

Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график. Если каждую пару значений Н и t из данной таблицы подставить в приведенную ранее формулу зависимости высоты от времени, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. Однако если сбрасывать не стальной шарик, а большой легкий мяч, то равенство не будет достигаться, а если надувной шарик, то значения левой и правой частей формулы будут различаться очень сильно. Как вы думаете, почему?

Итак, на этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рисунке. Имея формулу, можно легко создать таблицу и построить график, а наоборот - весьма проблематично.
Точно так же можно отобразить зависимость любого явления физической природы, описываемого известными формулами.
Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели . В физике динамические информационные модели описывают движение тел, в биологии - развитие организмов или популяций животных, в химии - протекание химических реакций и т. д.

Модели статистического прогнозирования
Статистика - наука о сборе, измерении и анализе массовых количественных данных.
Существуют медицинская статистика, экономическая статистика, социальная статистика и другие. Математический аппарат статистики разрабатывает наука под названием математическая статистика .

Статистические данные всегда являются приближенными, усредненными, они носят оценочный характер, но верно отражают зависимость величин. Для достоверности результатов, полученных путем анализа статистических данных, этих данных должно быть много.
Например, наиболее сильное влияние на бронхиально-легочные заболевания оказывает угарный газ - . Поставив цель определить эту зависимость, специалисты по медицинской статистике проводят сбор данных. Полученные данные можно свести в таблицу, а также представить в виде точечной диаграммы.
А как построить математическую модель данного явления? Очевидно, нужно получить формулу, отражающую зависимость количества хронических больных Р от концентрации угарного газа С. На языке математики это называется функцией зависимости Р от С: Р(С). Вид такой функции неизвестен, ее следует искать методом подбора по экспериментальным данным.


График искомой функции должен проходить близко к точкам диаграммы экспериментальных данных. Строить функцию так, чтобы ее график точно проходил через все данные точки, не имеет смысла. Во-первых, математический вид такой функции может оказаться слишком сложным. Во-вторых, экспериментальные значения являются приближенными.
Отсюда следуют основные требования к искомой функции:
она должна быть достаточно простой для использования ее в дальнейших вычислениях;
график этой функции должен проходить вблизи экспериментальных точек так, чтобы отклонения этих точек от графика были минимальны и равномерны. Полученную функцию в статистике принято называть регрессионной моделью .

Метод наименьших квадратов
Получение регрессионной модели происходит в два этапа:
1) подбор вида функции;
2) вычисление параметров функции.
Первая задача не имеет строгого решения.
Чаще всего выбор производится среди следующих функций:
у = ах + b - линейная функция (полином 1-й степени);
у = ах 2 + bх + с - квадратичная функция

(полином 2-й степени) ;
у = а n х n + a (n-1) х n-1 +...+ а 2 х 2 + a 1 х + a 0 - полином n-й степени ;
у = аln (х) + b - логарифмическая функция;
у = ае bх - экспоненциальная функция;
у = ах b - степенная функция.
После выбора одной из предлагаемых функций нужно подобрать параметры (а, b, с и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам, используя метод вычисления параметров. Такой метод был предложен в XVIII веке немецким математиком К. Гауссом. Он называется методом наименьших квадратов (МНК) и очень широко используется в статистической обработке данных и встроен во многие математические пакеты программ. Важно понимать следующее: методом наименьших квадратов по данному набору экспериментальных точек можно построить любую функцию. А вот будет ли она нас удовлетворять, это уже вопрос критерия соответствия. Для нашего примера рассмотрим три функции, построенные методом наименьших квадратов.

Данные рисунки получены с помощью табличного процессора Microsoft Excel. График регрессионной модели называется трендом .
Английское слово «trend» можно перевести как «общее направление», или «тенденция».
График линейной функции - это прямая. По этому графику трудно что-либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды правдоподобны.
На графиках присутствует величина, полученная в результате построения трендов. Она обозначена как R 2 . В статистике эта величина называется коэффициентом детерминированности . Именно она определяет, насколько удачной является полученная регрессионная модель. Коэффициент детерминированности всегда заключен в диапазоне от 0 до 1. Чем R 2 ближе к 1, тем удачнее регрессионная модель.
Из трех выбранных моделей значение R 2 наименьшее у линейной. Значит, она самая неудачная. Значения же R 2 у двух других моделей достаточно близки (разница меньше 0,01). Они одинаково удачны.

Прогнозирование по регрессионной модели
Получив регрессионную математическую модель можно прогнозировать процесс путем вычислений, т.е.оценить уровень заболеваемости астмой не только для тех значений, которые были получены путем измерений, но и для других значений.
Если прогноз производится в пределах экспериментальных значений, то это называется восстановлением значения .
Прогнозирование за пределами экспериментальных данных называется экстраполяцией.
Имея регрессионную модель, легко прогнозировать, производя расчеты с помощью электронных таблиц.
В ряде случаев с экстраполяцией надо быть осторожным. Применимость всякой регрессионной модели ограничена, особенно за пределами
экспериментальной области. В нашем примере при экстраполяции не следует далеко уходить от величины 5 мг/м 3 . Что будет вдали от этой области, мы не знаем. Всякая экстраполяция держится на гипотезе: «предположим, что за пределами экспериментальной области закономерность сохраняется». А если не сохраняется?
Например, квадратичная модель в нашем примере при концентрации, близкой к 0, выдаст 150 человек больных, т. е. больше, чем при 5 мг/м 3 . Очевидно, это нелепость. В области малых значений С лучше работает экспоненциальная модель. Кстати, это довольно типичная ситуация: разным областям данных могут лучше соответствовать разные модели.

Моделирование корреляционных зависимостей
Пусть важной характеристикой некоторой сложной системы является фактор А. На него могут оказывать влияние одновременно многие другие факторы: B,C,D и т. д.


Зависимости между величинами, каждая из которых подвергается неконтролируемому полностью разбросу, называются корреляционными зависимостями.

Раздел математической статистики, который исследует такие зависимости, называется корреляционным анализом. Корреляционный анализ изучает усредненный закон поведения каждой из величин в зависимости от значений другой величины, а также меру такой зависимости.
Оценку корреляции величин начинают с высказывания гипотезы о возможном характере зависимости между их значениями. Чаще всего допускают наличие линейной зависимости. В таком случае мерой корреляционной зависимости является величина, которая называется коэффициентом корреляции .
коэффициент корреляции (обычно обозначаемый греческой буквой
ρ ) есть число из диапазона от -1 до +1;
если
ρ по модулю близко к 1, то имеет место сильная корреляция, если к 0, то слабая;
близость ρ к +1 означает, что возрастанию значений одного набора соответствует возрастание значений другого набора, близость к -1 означает, что возрастанию значений одного набора соответствует убывание значений другого набора;
значение ρ легко найти с помощью Excel, так как в эту программу встроены соответствующие формулы.

В качестве примера сложной системы рассмотрим школу. Пусть хозяйственные расходы школы выражаются количеством рублей, отнесенных к числу учеников в школе (руб./чел.), потраченных за определенный период времени (например, за последние 5 лет). Успеваемость же пусть оценивается средним баллом учеников школы по результатам окончания последнего учебного года.
Итоги сбора данных по 20 школам, введенные в электронную таблицу и
точечная диаграмма представлены на рисунках.
Значения обеих величин: финансовых затрат и успеваемости учеников - имеют значительный разброс и, на первый взгляд, взаимосвязи между ними не видно. Однако она вполне может существовать.

В Excel функция вычисления коэффициента корреляции называется КОРРЕЛ и входит в группу статистических функций. Покажем, как ею воспользоваться. На том же листе Excel, где находится таблица, надо установить курсор на любую свободную ячейку и запустить функцию КОРРЕЛ. Она запросит два диапазона значений. Укажем, соответственно, В2:В21 и С2:С21. После их ввода будет выведен ответ: р = 0,500273843. Эта величина говорит о среднем уровне корреляции.
Теперь рассмотрим какой параметр из 2-х: оснащённость учебниками или компьютерами является коррелирующим в большей степени, т.е. имеет большее влияние на успеваемость
Ниже на рисунке приведены результаты измерения обоих факторов в 11 разных школах.
Для обеих зависимостей получены коэффициенты линейной корреляции. Как видно из таблицы, корреляция между обеспеченностью учебниками и успеваемостью сильнее, чем корреляция между компьютерным обеспечением и успеваемостью (хотя и тот, и другой коэффициенты корреляции не очень большие). Отсюда можно сделать вывод, что пока еще книга остается более значительным источником знаний, чем компьютер.





Планируемые результаты обучения математике в 5-6 классах

Арифметика

Понимать особенности десятичной системы счисления;

Использовать понятия, связанные с делимостью натуральных чисел;

Выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

Сравнивать и упорядочивать рациональные числа;

Выполнять вычисления с рациональными числами, соче­тая устные и письменные приёмы вычислений, применять калькулятор;

Использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выпол­нять несложные практические расчёты;

Анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).

Познакомиться с позиционными системами счисления с основаниями, отличными от 10;

Углубить и развить представления о натуральных числах и свойствах делимости;

Научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычис­ления, выбирая подходящий для ситуации способ.

По окончании изучения курса учащийся научится:

· выполнять операции с числовыми выражениями;

· выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);

· решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

· развить представления о буквенных выражениях и их преобразованиях;

· овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых, так и практических задач.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

Распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;



Строить углы, определять их градусную меру;

Распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

Определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

Вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

Научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

Углубить и развить представления о пространственных геометрических фигурах;

Научиться применять понятие развёртки для выполнения практических расчётов.

По окончании изучения курса учащийся научится:

Использовать простейшие способы представления и анализа статистических данных;

Решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

Приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

Научиться некоторым специальным приёмам решения комбинаторных задач.

Арифметика

Натуральные числа

Ряд натуральных чисел. Десятичная запись натураль­ных чисел. Округление натуральных чисел.

Координатный луч.

Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

Простые и составные числа. Разложение чисел на простые множители. „

Обыкновенные дроби. Основное свойство дроби. Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.

Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновен­ной дроби.

Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости. Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

Решение текстовых задач арифметическими способами.

Рациональные числа

Положительные, отрицательные числа и число 0.

Противоположные числа. Модуль числа.

Целые числа. Рациональные числа. Сравнение рацио­нальных чисел. Арифметические действия с рациональ­ными числами. Свойства сложения и умножения рациональных чисел.

Координатная прямая. Координатная плоскость.

Величины. Зависимости между величинами

Единицы длины, площади, объёма, массы, времени, скорости.

Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.

Числовые и буквенные выражения. Уравнения

Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности. Комбинаторные задачи

Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

Среднее арифметическое. Среднее значение величины.

Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Геометрические фигуры. Измерения геометрических величин

Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.

Угол. Виды углов. Градусная мера угла. Измерение и по­строение углов с помощью транспортира.

Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число.

Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.

Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры развёрток многогранников, цилиндра, конуса. Понятие и свойства объёма. Объём прямоугольного параллелепипеда и куба.

Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.

Осевая и центральная симметрии.

Регрессионного анализа

Обработка результатов эксперимента методом

При изучении процессов функционирования сложных систем приходится иметь дело с целым рядом одновременно действующих случайных величин. Для уяснения механизма явлений, причинно-следственных связей между элементами системы и т.д., по полученным наблюдениям мы пытаемся установить взаимоотношения этих величин.

В математическом анализе зависимость, например, между двумя величинами выражается понятием функции

где каждому значению одной переменной соответствует только одно значение другой. Такая зависимость носит название функциональной .

Гораздо сложнее обстоит дело с понятием зависимости случайных величин. Как правило, между случайными величинами (случайными факторами), определяющими процесс функционирования сложных систем, обычно существует такая связь, при которой с изменением одной величины меняется распределение другой. Такая связь называется стохастической , или вероятностной . При этом величину изменения случайного фактора Y , соответствующую изменению величины Х , можно разбить на два компонента. Первый связан с зависимостью Y от X , а второй с влиянием "собственных" случайных составляющих величин Y и X . Если первый компонент отсутствует, то случайные величины Y и X являются независимыми. Если отсутствует второй компонент, то Y и X зависят функционально. При наличии обоих компонент соотношение между ними определяет силу или тесноту связи между случайными величинами Y и X .

Существуют различные показатели, которые характеризуют те или иные стороны стохастической связи. Так, линейную зависимость между случайными величинами X и Y определяет коэффициент корреляции.

где – математические ожидания случайных величин X и Y .

– средние квадратические отклонения случайных величин X и Y .


Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или убывать) по линейному закону. Если случайные величины X и Y связаны строгой линейной функциональной зависимостью, например,

y=b 0 +b 1 x 1 ,

то коэффициент корреляции будет равен ; причем знак соответствует знаку коэффициента b 1 .Если величины X и Y связаны произвольной стохастической зависимостью, то коэффициент корреляции будет изменяться в пределах

Следует подчеркнуть, что для независимых случайных величин коэффициент корреляции равен нулю. Однако коэффициент корреляции как показатель зависимости между случайными величинами обладает серьезными недостатками. Во-первых, из равенства r = 0 не следует независимость случайных величин X и Y (за исключением случайных величин, подчиненных нормальному закону распределения, для которых r = 0 означает одновременно и отсутствие всякой зависимости). Во- вторых, крайние значения также не очень полезны, так как соответствуют не всякой функциональной зависимости, а только строго линейной.



Полное описание зависимости Y от X , и притом выраженное в точных функциональных соотношениях, можно получить, зная условную функцию распределения .

Следует отметить, что при этом одна из наблюдаемых переменных величин считается неслучайной. Фиксируя одновременно значения двух случайных величин X и Y , мы при сопоставлении их значений можем отнести все ошибки лишь к величине Y . Таким образом, ошибка наблюдения будет складываться из собственной случайной ошибки величины Y и из ошибки сопоставления, возникающей из-за того, что с величиной Y сопоставляется не совсем то значение X , которое имело место на самом деле.

Однако отыскание условной функции распределения, как правило, оказывается весьма сложной задачей. Наиболее просто исследовать зависимость между Х и Y при нормальном распределении Y , так как оно полностью определяется математическим ожиданием и дисперсией. В этом случае для описания зависимости Y от X не нужно строить условную функцию распределения, а достаточно лишь указать, как при изменении параметра X изменяются математическое ожидание и дисперсия величины Y .

Таким образом, мы приходим к необходимости отыскания только двух функций:

(3.2)

Зависимость условной дисперсии D от параметра Х носит название сходастической зависимости. Она характеризует изменение точности методики наблюдений при изменении параметра и используется достаточно редко.

Зависимость условного математического ожидания M от X носит название регрессии , она дает истинную зависимость величин Х и У , лишенную всех случайных наслоений. Поэтому идеальной целью всяких исследований зависимых величин является отыскание уравнения регрессии, а дисперсия используется лишь для оценки точности полученного результата.