نحوه پیدا کردن ممیز اگر برابر با 0 باشد. معادلات درجه دوم. ممیز. راه حل، مثال معنای فیزیکی ممیز

امیدوارم پس از مطالعه این مقاله یاد بگیرید که چگونه ریشه های یک معادله درجه دوم را کامل بیابید.

با استفاده از ممیز، فقط معادلات درجه دوم کامل برای حل معادلات ناقص حل می شوند معادلات درجه دوماز روش های دیگری که در مقاله حل معادلات درجه دوم ناقص خواهید یافت استفاده کنید.

به کدام معادلات درجه دوم کامل می گویند؟ این معادلات شکل ax 2 + b x + c = 0، که در آن ضرایب a، b و c برابر با صفر نیستند. بنابراین، برای حل یک معادله درجه دوم کامل، باید تفکیک کننده D را محاسبه کنیم.

D = b 2 - 4ac.

بسته به ارزش ممیز، پاسخ را یادداشت می کنیم.

اگر ممیز یک عدد منفی باشد (D< 0),то корней нет.

اگر ممیز صفر باشد، x = (-b)/2a. هنگامی که ممیز یک عدد مثبت باشد (D > 0)،

سپس x 1 = (-b - √D)/2a، و x 2 = (-b + √D)/2a.

مثلا. معادله را حل کنید x 2- 4x + 4 = 0.

D = 4 2 - 4 4 = 0

x = (- (-4))/2 = 2

پاسخ: 2.

حل معادله 2 x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

پاسخ: بدون ریشه.

حل معادله 2 x 2 + 5x – 7 = 0.

D = 5 2 - 4 2 (-7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= - 3.5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

پاسخ: – 3.5; 1.

پس بیایید حل معادلات درجه دوم کامل را با استفاده از نمودار شکل 1 تصور کنیم.

با استفاده از این فرمول ها می توانید هر معادله درجه دوم کامل را حل کنید. شما فقط باید مراقب باشید معادله به صورت چند جمله ای نوشته شد نمای استاندارد

آ x 2 + bx + c،در غیر این صورت ممکن است اشتباه کنید به عنوان مثال، در نوشتن معادله x + 3 + 2x 2 = 0، می توانید به اشتباه تصمیم بگیرید که

a = 1، b = 3 و c = 2. سپس

D = 3 2 – 4 1 2 = 1 و سپس معادله دو ریشه دارد. و این درست نیست. (راه حل مثال 2 را در بالا ببینید).

بنابراین، اگر معادله به صورت چند جمله ای از فرم استاندارد نوشته نشود، ابتدا باید معادله درجه دوم کامل به صورت چند جمله ای از فرم استاندارد (تک جمله ای با بالاترین شاخصدرجه، یعنی آ x 2 ، سپس با کمتر bxو سپس یک عضو رایگان با.

هنگام حل معادله درجه دوم کاهش یافته و معادله درجه دوم با ضریب زوج در ترم دوم، می توانید از فرمول های دیگر استفاده کنید. بیایید با این فرمول ها آشنا شویم. اگر در یک معادله درجه دوم کامل ضریب در جمله دوم زوج باشد (b = 2k)، می توانید معادله را با استفاده از فرمول های داده شده در نمودار در شکل 2 حل کنید.

یک معادله درجه دوم کامل را کاهش می گویند اگر ضریب در x 2 برابر با یکو معادله شکل خواهد گرفت x 2 + px + q = 0. چنین معادله ای را می توان برای حل ارائه کرد، یا می توان آن را با تقسیم تمام ضرایب معادله بر ضریب به دست آورد. آ، ایستاده در x 2 .

شکل 3 نموداری را برای حل مربع کاهش یافته نشان می دهد
معادلات بیایید نمونه ای از کاربرد فرمول های مورد بحث در این مقاله را بررسی کنیم.

مثال. معادله را حل کنید

3x 2 + 6x – 6 = 0.

بیایید این معادله را با استفاده از فرمول های نشان داده شده در نمودار در شکل 1 حل کنیم.

D = 6 2 - 4 3 (- 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = -1 - √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = -1 + √3

پاسخ: –1 – √3; –1 + √3

می توانید متوجه شوید که ضریب x در این معادله است عدد زوج، یعنی b = 6 یا b = 2k، از آنجا k = 3. سپس سعی می کنیم معادله را با استفاده از فرمول های داده شده در نمودار شکل D 1 = 3 2 – 3 · (– 6) = 9 + 18 حل کنیم. = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = - 1 + √3

پاسخ: –1 – √3; –1 + √3. با توجه به اینکه همه ضرایب در این معادله درجه دوم بر 3 بخش پذیر هستند و با انجام تقسیم، معادله درجه دوم کاهش یافته را بدست می آوریم x 2 + 2x – 2 = 0 این معادله را با استفاده از فرمول های درجه دوم کاهش یافته حل کنید.
معادلات شکل 3.

D 2 = 2 2 - 4 (- 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

پاسخ: –1 – √3; –1 + √3.

همانطور که می بینیم، هنگام حل این معادله توسط فرمول های مختلفما همان پاسخ را دریافت کردیم. بنابراین، با تسلط کامل بر فرمول های نشان داده شده در نمودار در شکل 1، همیشه قادر خواهید بود هر معادله درجه دوم کامل را حل کنید.

وب سایت، هنگام کپی کردن مطالب به طور کامل یا جزئی، پیوند به منبع مورد نیاز است.

در میان کل دوره برنامه آموزشی مدرسهدر جبر، یکی از مبسوط ترین مباحث، مبحث معادلات درجه دوم است. در این مورد، یک معادله درجه دوم به عنوان معادله ای به شکل ax 2 + bx + c = 0 درک می شود، که در آن a ≠ 0 (بخوانید: ضرب در x مجذور به علاوه x به علاوه ce برابر با صفر است، جایی که a نیست. برابر با صفر). در این حالت، جایگاه اصلی را فرمول‌هایی برای یافتن ممیز یک معادله درجه دوم اشغال می‌کنند. نوع مشخص شده، که به عنوان عبارتی درک می شود که به شما امکان می دهد وجود یا عدم وجود ریشه ها را در یک معادله درجه دوم و همچنین تعداد آنها (در صورت وجود) را تعیین کنید.

فرمول (معادله) ممیز یک معادله درجه دوم

فرمول عمومی پذیرفته شده برای تشخیص معادله درجه دوم به شرح زیر است: D = b 2 – 4ac. با محاسبه ممیز با استفاده از فرمول مشخص شده، نه تنها می توانید حضور و تعداد ریشه های یک معادله درجه دوم را تعیین کنید، بلکه روشی را نیز برای یافتن این ریشه ها انتخاب کنید که بسته به نوع معادله درجه دوم، چندین روش وجود دارد.

اگر ممیز صفر باشد به چه معناست \ فرمول ریشه های یک معادله درجه دوم اگر ممیز صفر باشد؟

متمایز کننده، به شرح زیر از فرمول، نشان داده شده است حرف لاتیند- در موردی که ممیز برابر با صفر باشد، باید نتیجه گرفت که معادله درجه دوم به شکل ax 2 + bx + c = 0، که در آن a ≠ 0، تنها یک ریشه دارد که با استفاده از فرمول ساده شده محاسبه می شود. . این فرمولفقط زمانی اعمال می شود که ممیز صفر باشد و به این شکل باشد: x = –b/2a، که x ریشه معادله درجه دوم است، b و a متغیرهای متناظر معادله درجه دوم هستند. برای یافتن ریشه یک معادله درجه دوم، باید مقدار منفی متغیر b را بر دو برابر مقدار متغیر a تقسیم کنید. عبارت به دست آمده جواب یک معادله درجه دوم خواهد بود.

حل معادله درجه دوم با استفاده از ممیز

اگر هنگام محاسبه ممیز با استفاده از فرمول بالا، معلوم شود ارزش مثبت(D بالای صفر)، سپس معادله درجه دوم دارای دو ریشه است که با استفاده از فرمول های زیر محاسبه می شود: x 1 = (–b + vD)/2a، x 2 = (–b – vD)/2a. در اغلب موارد، تمایز به طور جداگانه محاسبه نمی شود، بلکه به سادگی به مقدار D که ریشه از آن استخراج می شود، جایگزین می شود. بیان رادیکالدر قالب یک فرمول متمایز. اگر متغیر b دارای مقدار زوج باشد، برای محاسبه ریشه های یک معادله درجه دوم به شکل ax 2 + bx + c = 0، که در آن a ≠ 0، می توانید از فرمول های زیر نیز استفاده کنید: x 1 = (–k + v(k2 – ac))/a، x 2 = (–k + v(k2 – ac))/a، که k = b/2.

در برخی موارد برای راه حل عملیمعادلات درجه دوم، می توانید از قضیه Vieta استفاده کنید، که بیان می کند که برای مجموع ریشه های یک معادله درجه دوم به شکل x 2 + px + q = 0 مقدار x 1 + x 2 = –p درست خواهد بود و برای محصول ریشه معادله بالا– عبارت x 1 x x 2 = q.

آیا ممیز می تواند کمتر از صفر باشد؟

هنگام محاسبه مقدار متمایز، ممکن است با وضعیتی روبرو شوید که تحت هیچ یک از موارد توصیف شده قرار نمی گیرد - زمانی که متمایز کننده دارای مقدار منفی (یعنی کمتر از صفر) باشد. در این مورد، به طور کلی پذیرفته شده است که یک معادله درجه دوم به شکل ax 2 + bx + c = 0، که در آن a ≠ 0، ریشه های واقعیندارد، بنابراین، حل آن محدود به محاسبه ممیز خواهد بود و فرمول های فوق برای ریشه های معادله درجه دوم در در این مورداعمال نخواهد شد. در همان زمان در پاسخ معادله درجه دوم نوشته شده است که «معادله ریشه واقعی ندارد».

ویدئوی توضیحی:

معادلات درجه دوم. ممیز. راه حل، مثال

توجه!
اضافی وجود دارد
مواد در بخش ویژه 555.
برای کسانی که خیلی "نه خیلی..." هستند
و برای کسانی که "خیلی...")

انواع معادلات درجه دوم

معادله درجه دوم چیست؟ چه شکلی است؟ در مدت معادله درجه دومکلمه کلیدی است "مربع".این بدان معناست که در معادله لزوماباید یک x مربع وجود داشته باشد. علاوه بر آن، معادله ممکن است (یا نه!) فقط شامل X (به توان اول) و فقط یک عدد باشد. (عضو آزاد).و نباید X به درجه دو وجود داشته باشد.

صحبت كردن زبان ریاضی، یک معادله درجه دوم معادله ای به شکل زیر است:

اینجا الف، ب و ج- تعدادی اعداد ب و ج- مطلقاً، اما آ- هر چیزی غیر از صفر مثلا:

اینجا آ =1; ب = 3; ج = -4

اینجا آ =2; ب = -0,5; ج = 2,2

اینجا آ =-3; ب = 6; ج = -18

خوب فهمیدی...

در این معادلات درجه دوم سمت چپ وجود دارد مجموعه کامل اعضا. X مجذور ضریب آ، x به توان اول با ضریب بو عضو رایگان s.

چنین معادلات درجه دوم نامیده می شوند پر شده.

و اگر ب= 0، چه چیزی به دست می آوریم؟ ما داریم X به درجه اول ناپدید می شود.وقتی در صفر ضرب شود این اتفاق می افتد.) مثلاً معلوم می شود:

5x 2 -25 = 0،

2x 2 -6x=0،

-x 2 +4x=0

و غیره. و اگر هر دو ضریب بو جبرابر با صفر هستند، پس از آن ساده تر است:

2 x 2 = 0،

-0.3x 2 =0

چنین معادلاتی که در آن چیزی کم است نامیده می شود معادلات درجه دوم ناقصکه کاملاً منطقی است.) لطفاً توجه داشته باشید که x مربع در همه معادلات وجود دارد.

اتفاقا چرا آنمی تواند برابر با صفر باشد؟ و شما به جای آن جایگزین می کنید آصفر.) مربع X ما ناپدید می شود! معادله خطی خواهد شد. و راه حل کاملا متفاوت است ...

این همه انواع اصلی معادلات درجه دوم است. کامل و ناقص.

حل معادلات درجه دوم.

حل معادلات درجه دوم کامل

حل معادلات درجه دوم آسان است. طبق فرمول ها و قوانین واضح و ساده. در مرحله اول لازم است معادله داده شدهمنجر شدن نمای استاندارد، یعنی به فرم:

اگر معادله قبلاً به این شکل به شما داده شده است، لازم نیست مرحله اول را انجام دهید.) نکته اصلی این است که همه ضرایب را به درستی تعیین کنید. آ, بو ج.

فرمول برای یافتن ریشه های یک معادله درجه دوم به صورت زیر است:

عبارت زیر علامت ریشه نامیده می شود ممیز. اما بیشتر در مورد او در زیر. همانطور که می بینید، برای یافتن X از آن استفاده می کنیم فقط الف، ب و ج. آن ها ضرایب از یک معادله درجه دوم فقط با دقت مقادیر را جایگزین کنید الف، ب و جما با این فرمول محاسبه می کنیم. جایگزین کنیم با نشانه های خودت! به عنوان مثال، در معادله:

آ =1; ب = 3; ج= -4. در اینجا ما آن را یادداشت می کنیم:

مثال تقریباً حل شده است:

این پاسخ است.

همه چیز بسیار ساده است. و چه، به نظر شما اشتباه کردن غیرممکن است؟ خب آره چطوری...

رایج ترین اشتباهات اشتباه با مقادیر علامت است الف، ب و ج. یا بهتر است بگوییم، نه با علائم آنها (کجا گیج شویم؟)، بلکه با جایگزینی مقادیر منفیدر فرمول محاسبه ریشه آنچه در اینجا کمک می کند، ضبط دقیق فرمول با اعداد خاص است. اگر در محاسبات مشکلی وجود دارد، انجام این کار!

فرض کنید باید مثال زیر را حل کنیم:

اینجا آ = -6; ب = -5; ج = -1

فرض کنید می دانید که به ندرت بار اول پاسخ می گیرید.

خب تنبل نباش نوشتن خط اضافیحدود 30 ثانیه طول می کشد و تعداد خطاها به شدت کاهش خواهد یافت. بنابراین ما با تمام پرانتزها و علائم به تفصیل می نویسیم:

به نظر می رسد نوشتن با این دقت بسیار دشوار است. اما فقط به نظر می رسد. آن را امتحان کنید. خوب یا انتخاب کن چه چیزی بهتر است، سریع یا درست؟ علاوه بر این، من شما را خوشحال خواهم کرد. بعد از مدتی دیگر نیازی نیست همه چیز را با دقت بنویسید. خود به خود درست از آب در می آید. به خصوص اگر استفاده می کنید تکنیک های عملی، که در زیر توضیح داده شده است. این مثال شیطانیبا انبوهی از منفی ها را می توان به راحتی و بدون خطا حل کرد!

اما، اغلب، معادلات درجه دوم کمی متفاوت به نظر می رسند. به عنوان مثال، مانند این:

آیا آن را تشخیص دادید؟) بله! این معادلات درجه دوم ناقص.

حل معادلات درجه دوم ناقص.

آنها همچنین می توانند با استفاده از یک فرمول کلی حل شوند. شما فقط باید به درستی بفهمید که آنها در اینجا با چه چیزی برابر هستند. الف، ب و ج.

آیا آن را فهمیده اید؟ در مثال اول a = 1; b = -4;آ ج? اصلا وجود نداره! خوب، بله، درست است. در ریاضیات این به این معنی است c = 0 ! همین. به جای آن صفر را به فرمول جایگزین کنید جو ما موفق خواهیم شد. مثال دوم هم همینطور. فقط ما اینجا صفر نداریم با، آ ب !

اما معادلات درجه دوم ناقص را می توان بسیار ساده تر حل کرد. بدون هیچ فرمولی بیایید اولی را در نظر بگیریم معادله ناقص. در سمت چپ چه کاری می توانید انجام دهید؟ می توانید X را از پرانتز خارج کنید! بیا بیرونش کنیم

و از این چی؟ و این که حاصل برابر صفر است اگر و فقط اگر هر یک از عوامل برابر با صفر باشد! باور نمی کنی؟ خوب، پس دو عدد غیر صفر بیاورید که با ضرب آنها صفر می شود!
کار نمی کند؟ خودشه...
بنابراین، می توانیم با اطمینان بنویسیم: x 1 = 0, x 2 = 4.

همه. اینها ریشه های معادله ما خواهند بود. هر دو مناسب هستند. هنگامی که هر یک از آنها را در معادله اصلی جایگزین می کنیم، هویت صحیح 0 = 0 را به دست می آوریم. همانطور که می بینید، راه حل بسیار ساده تر از استفاده از فرمول کلی است. اجازه دهید توجه کنم، اتفاقا، کدام X اولین و کدام دوم خواهد بود - کاملاً بی تفاوت. نوشتن به ترتیب راحت است، x 1- چه چیزی کوچکتر است و x 2- آنچه بزرگتر است

معادله دوم را نیز می توان به سادگی حل کرد. حرکت 9 به سمت راست. ما گرفتیم:

تنها چیزی که باقی می ماند استخراج ریشه از 9 است و تمام. معلوم خواهد شد:

همچنین دو ریشه . x 1 = -3, x 2 = 3.

به این ترتیب تمام معادلات درجه دوم ناقص حل می شوند. یا با قرار دادن X خارج از براکت، یا با حرکت دادن عدد به سمت راست و سپس استخراج ریشه.
اشتباه گرفتن این تکنیک ها بسیار دشوار است. صرفاً به این دلیل که در حالت اول باید ریشه X را استخراج کنید که به نوعی نامفهوم است و در مورد دوم چیزی برای خارج کردن از براکت وجود ندارد ...

ممیز. فرمول تشخیصی

واژه جادویی ممیز ! به ندرت دانش آموز دبیرستانی این کلمه را نشنیده است! عبارت "ما از طریق یک متمایز حل می کنیم" اعتماد و اطمینان را القا می کند. چون نیازی به حیله از ممیز نیست! استفاده از آن ساده و بدون دردسر است.) بیشتر از همه به شما یادآوری می کنم فرمول کلیبرای راه حل ها هرمعادلات درجه دوم:

به عبارتی که در زیر علامت ریشه قرار دارد، ممیز می گویند. معمولاً متمایز کننده با حرف نشان داده می شود دی. فرمول تفکیک:

D = b 2 - 4ac

و چه چیزی در این بیان قابل توجه است؟ چرا سزاوار یک نام خاص بود؟ چی معنی ممیز؟گذشته از همه اینها -ب،یا 2aدر این فرمول آنها به طور خاص به آن چیزی نمی گویند ... حروف و حروف.

موضوع اینجاست. هنگام حل یک معادله درجه دوم با استفاده از این فرمول، امکان پذیر است فقط سه مورد

1. ممیز مثبت است.این بدان معنی است که ریشه را می توان از آن استخراج کرد. اینکه ریشه به خوبی استخراج شود یا ضعیف، یک سوال متفاوت است. مهم این است که در اصل چه چیزی استخراج می شود. سپس معادله درجه دوم شما دو ریشه دارد. دو راه حل متفاوت

2. ممیز صفر است.سپس شما یک راه حل خواهید داشت. از آنجایی که با جمع یا تفریق صفر در صورت، چیزی تغییر نمی کند. به بیان دقیق، این یک ریشه نیست، بلکه دو تا یکسان. اما، در یک نسخه ساده شده، مرسوم است که در مورد آن صحبت شود یک راه حل

3. ممیز منفی است.از جانب عدد منفیجذر گرفته نمی شود. بسیار خوب. این یعنی هیچ راه حلی وجود ندارد.

صادقانه بگویم، وقتی راه حل سادهمعادلات درجه دوم، مفهوم تمایز به ویژه مورد نیاز نیست. مقادیر ضرایب را در فرمول جایگزین می کنیم و می شماریم. همه چیز آنجا به خودی خود اتفاق می افتد، دو ریشه، یکی و هیچ. با این حال، هنگام حل بیشتر کارهای دشوار، بدون دانش معنی و فرمول ممیزکافی نیست. به خصوص در معادلات با پارامترها. چنین معادلاتی هستند ایروباتیکبرای آزمون دولتی و آزمون یکپارچه دولتی!)

بنابراین، چگونه معادلات درجه دوم را حل کنیماز طریق تمایزی که به یاد آوردی یا یاد گرفتید، که بد نیست.) می دانید که چگونه به درستی تعیین کنید الف، ب و ج. آیا می دانید چگونه؟ با دقتآنها را به فرمول ریشه جایگزین کنید و با دقتنتیجه را بشمار آیا آن را فهمیدی کلمه کلیدیاینجا - با دقت؟

اکنون به تکنیک های عملی توجه داشته باشید که به طور چشمگیری تعداد خطاها را کاهش می دهد. همان هایی که ناشی از بی توجهی است... که بعداً دردناک و توهین آمیز می شود...

اولین قرار . قبل از حل یک معادله درجه دوم تنبل نباشید و آن را به شکل استاندارد بیاورید. این یعنی چی؟
بیایید بگوییم که پس از همه تبدیل ها، معادله زیر را به دست می آورید:

برای نوشتن فرمول ریشه عجله نکنید! تقریباً مطمئناً احتمالات را با هم مخلوط خواهید کرد الف، ب و ج.مثال را درست بسازید. ابتدا X مربع، سپس بدون مربع، سپس عبارت آزاد. مثل این:

و باز هم عجله نکنید! یک منهای جلوی یک مربع X می تواند واقعا شما را ناراحت کند. فراموش کردن آسان است... از شر منهای خلاص شوید. چگونه؟ بله همانطور که در مبحث قبل آموزش داده شد! باید کل معادله را در -1 ضرب کنیم. ما گرفتیم:

اما اکنون می توانید با خیال راحت فرمول ریشه ها را یادداشت کنید، تفکیک کننده را محاسبه کنید و حل مثال را تمام کنید. خودت تصمیم بگیر اکنون باید ریشه های 2 و -1 داشته باشید.

پذیرایی دوم. ریشه ها را بررسی کنید! طبق قضیه ویتا. نترس، من همه چیز را توضیح می دهم! چک کردن آخرین چیزمعادله. آن ها همانی که برای نوشتن فرمول ریشه استفاده کردیم. اگر (مانند این مثال) ضریب a = 1، بررسی ریشه ها آسان است. کافی است آنها را ضرب کنیم. نتیجه باید یک عضو رایگان باشد، یعنی. در مورد ما -2. لطفا توجه داشته باشید، نه 2، بلکه -2! عضو رایگان با علامت شما . اگر درست نشد، به این معنی است که شما قبلاً جایی را خراب کرده اید. به دنبال خطا باشید

اگر کار کرد، باید ریشه ها را اضافه کنید. آخرین و آخرین بررسی. ضریب باید باشد ببا مقابل آشنا در مورد ما -1+2 = +1. یک ضریب بکه قبل از X است برابر با 1- است. بنابراین، همه چیز درست است!
حیف که این فقط برای مثال هایی که x مجذور خالص است با ضریب بسیار ساده است a = 1.اما حداقل در چنین معادلاتی بررسی کنید! همه اشتباهات کمتراراده.

پذیرایی سوم . اگر معادله شما دارد شانس کسری، - از کسری خلاص شوید! معادله را در ضرب کنید مخرج مشترک، همانطور که در درس "چگونه معادلات را حل کنیم؟ تبدیلات یکسان." هنگام کار با کسرها، به دلایلی خطاها همچنان به وجود می آیند...

اتفاقا من قول دادم مثال شیطانی را با یک سری موارد منفی ساده کنم. لطفا! او اینجا است.

برای اینکه با منفی ها اشتباه نگیریم، معادله را در -1 ضرب می کنیم. ما گرفتیم:

همین! حل کردن یک لذت است!

بنابراین، اجازه دهید موضوع را خلاصه کنیم.

توصیه عملی:

1. قبل از حل، معادله درجه دوم را به فرم استاندارد می آوریم و آن را می سازیم درست.

2. اگر جلوی مجذور X ضریب منفی باشد، با ضرب کل معادله در -1 آن را حذف می کنیم.

3. اگر ضرایب کسری باشند، با ضرب کل معادله در ضریب مربوطه، کسرها را حذف می کنیم.

4. اگر مجذور x خالص باشد، ضریب آن برابر با یک است، با استفاده از قضیه ویتا می توان جواب را به راحتی تأیید کرد. انجام دهید!

حالا می توانیم تصمیم بگیریم.)

حل معادلات:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1) (x+2)

پاسخ ها (به هم ریخته):

x 1 = 0
x 2 = 5

x 1.2 =2

x 1 = 2
x 2 = -0.5

x - هر عدد

x 1 = -3
x 2 = 3

بدون راه حل

x 1 = 0.25
x 2 = 0.5

آیا همه چیز مناسب است؟ عالی! معادلات درجه دوم سردرد شما نیستند. سه مورد اول کار کردند، اما بقیه کار نکردند؟ پس مشکل از معادلات درجه دوم نیست. مشکل در تبدیل معادلات یکسان است. به لینک نگاه کنید مفید است

آیا کاملا کار نمی کند؟ یا اصلا درست نمیشه؟ سپس بخش 555 به شما کمک می کند که همه این مثال ها در آنجا تفکیک شوند. نشان داده شده اصلیاشتباهات در راه حل البته در مورد کاربرد هم صحبت می کند تحولات هویتیدر تصمیم گیری معادلات مختلف. کمک زیادی می کند!

اگر این سایت را دوست دارید ...

به هر حال، من چند سایت جالب دیگر برای شما دارم.)

می توانید حل مثال ها را تمرین کنید و سطح خود را پیدا کنید. تست با تایید فوری بیایید یاد بگیریم - با علاقه!)

می توانید با توابع و مشتقات آشنا شوید.

معادلات درجه دوم در کلاس هشتم مطالعه می شود، بنابراین هیچ چیز پیچیده ای در اینجا وجود ندارد. توانایی حل آنها کاملاً ضروری است.

معادله درجه دوم معادله ای به شکل ax 2 + bx + c = 0 است که ضرایب a، b و c عبارتند از اعداد دلخواهو یک ≠ 0.

قبل از مطالعه روش های خاصحل ها، توجه داشته باشید که تمام معادلات درجه دوم را می توان به سه کلاس تقسیم کرد:

  1. آنها ریشه ندارند.
  2. دقیقا یک ریشه داشته باشد.
  3. دوتا داشته باش ریشه های مختلف.

این هست تفاوت مهممعادلات درجه دوم از معادلات خطی، که در آن ریشه همیشه وجود دارد و منحصر به فرد است. چگونه تعیین کنیم که یک معادله چند ریشه دارد؟ یک چیز شگفت انگیز برای این وجود دارد - ممیز.

ممیز

اجازه دهید معادله درجه دوم ax 2 + bx + c = 0 داده شود، سپس به سادگی عدد D = b 2 - 4ac است.

این فرمول را باید از روی قلب بدانید. الان از کجا آمده مهم نیست. یک چیز دیگر مهم است: با علامت تمایز می توانید تعیین کنید که یک معادله درجه دوم چند ریشه دارد. برای مثال:

  1. اگر D< 0, корней нет;
  2. اگر D = 0 باشد، دقیقاً یک ریشه وجود دارد.
  3. اگر D > 0 باشد، دو ریشه وجود خواهد داشت.

لطفاً توجه داشته باشید: متمایز کننده تعداد ریشه ها را نشان می دهد و اصلاً علائم آنها را نشان نمی دهد ، همانطور که به دلایلی بسیاری معتقدند. به مثال ها نگاه کنید و خودتان همه چیز را متوجه خواهید شد:

وظیفه. معادلات درجه دوم چند ریشه دارند:

  1. x 2 - 8 x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

بیایید ضرایب معادله اول را بنویسیم و ممیز را پیدا کنیم:
a = 1، b = -8، c = 12;
D = (-8) 2 − 4 1 12 = 64 − 48 = 16

بنابراین ممیز مثبت است، بنابراین معادله دو ریشه متفاوت دارد. ما معادله دوم را به روشی مشابه تجزیه و تحلیل می کنیم:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = 131-.

ممیز منفی است، هیچ ریشه ای وجود ندارد. آخرین معادله باقی مانده این است:
a = 1; b = -6; c = 9;
D = (-6) 2 − 4 1 9 = 36 − 36 = 0.

ممیز صفر است - ریشه یک خواهد بود.

لطفا توجه داشته باشید که ضرایب برای هر معادله نوشته شده است. بله، طولانی است، بله، خسته کننده است، اما شما شانس را با هم مخلوط نمی کنید و اشتباهات احمقانه ای مرتکب نمی شوید. خودتان انتخاب کنید: سرعت یا کیفیت.

به هر حال، اگر به آن دست پیدا کنید، پس از مدتی نیازی به نوشتن همه ضرایب نخواهید داشت. شما چنین عملیاتی را در سر خود انجام خواهید داد. اکثر مردم از جایی بعد از 50-70 معادله حل شده شروع به انجام این کار می کنند - به طور کلی، نه چندان زیاد.

ریشه های یک معادله درجه دوم

حالا بیایید به سراغ خود راه حل برویم. اگر تفکیک کننده D > 0 باشد، ریشه ها را می توان با استفاده از فرمول ها پیدا کرد:

فرمول اصلی برای ریشه های یک معادله درجه دوم

وقتی D = 0 باشد، می توانید از هر یک از این فرمول ها استفاده کنید - همان عدد را دریافت خواهید کرد که پاسخ خواهد بود. در نهایت، اگر D< 0, корней нет — ничего считать не надо.

  1. x 2 - 2x - 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

معادله اول:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = -2; c = -3;
D = (-2) 2 - 4 1 (-3) = 16.

D > 0 ⇒ معادله دو ریشه دارد. بیایید آنها را پیدا کنیم:

معادله دوم:
15 − 2x − x 2 = 0 ⇒ a = −1; b = -2; c = 15;
D = (-2) 2 - 4 · (-1) · 15 = 64.

D > 0 ⇒ معادله دوباره دو ریشه دارد. بیایید آنها را پیدا کنیم

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \راست))=3. \\ \پایان (تراز کردن)\]

در نهایت معادله سوم:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ معادله یک ریشه دارد. از هر فرمولی می توان استفاده کرد. مثلا اولی:

همانطور که از مثال ها می بینید، همه چیز بسیار ساده است. اگر فرمول ها را بلد باشید و بتوانید بشمارید مشکلی پیش نمی آید. اغلب، هنگام جایگزینی ضرایب منفی در فرمول، خطا رخ می دهد. در اینجا دوباره، تکنیک توضیح داده شده در بالا کمک خواهد کرد: به فرمول به معنای واقعی کلمه نگاه کنید، هر مرحله را یادداشت کنید - و خیلی زود از شر اشتباهات خلاص خواهید شد.

معادلات درجه دوم ناقص

این اتفاق می افتد که یک معادله درجه دوم کمی با آنچه در تعریف ارائه شده است متفاوت است. مثلا:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

به راحتی می توان متوجه شد که این معادلات دارای یکی از اصطلاحات هستند. حل چنین معادلات درجه دوم حتی ساده تر از معادلات استاندارد است: آنها حتی نیازی به محاسبه متمایز ندارند. بنابراین، بیایید یک مفهوم جدید را معرفی کنیم:

معادله ax 2 + bx + c = 0 یک معادله درجه دوم ناقص نامیده می شود اگر b = 0 یا c = 0، یعنی. ضریب متغیر x یا عنصر آزاد صفر است.

البته زمانی که هر دوی این ضرایب برابر با صفر باشند، یک حالت بسیار دشوار ممکن است: b = c = 0. در این حالت، معادله به شکل ax 2 = 0 است. بدیهی است که چنین معادله ای یک ریشه دارد: x = 0.

بیایید موارد باقیمانده را در نظر بگیریم. اجازه دهید b = 0، سپس یک معادله درجه دوم ناقص از شکل ax 2 + c = 0 به دست می آوریم. اجازه دهید آن را کمی تبدیل کنیم:

از حسابی ریشه دوموجود دارد فقط از عدد غیر منفی، آخرین برابری فقط برای (-c/a) ≥ 0 معنا دارد. نتیجه گیری:

  1. اگر در یک معادله درجه دوم ناقص به شکل ax 2 + c = 0 نابرابری (-c/a) ≥ 0 برآورده شود، دو ریشه وجود خواهد داشت. فرمول بالا داده شده است؛
  2. اگر (-c/a)< 0, корней нет.

همانطور که می بینید، تمایز مورد نیاز نبود - در معادلات درجه دوم ناقص وجود ندارد محاسبات پیچیده. در واقع، حتی لازم نیست نابرابری (−c/a) ≥ 0 را به خاطر بسپارید. کافی است مقدار x 2 را بیان کنید و ببینید در طرف دیگر علامت مساوی چه چیزی وجود دارد. اگر یک عدد مثبت وجود داشته باشد، دو ریشه خواهد بود. اگر منفی باشد، اصلا ریشه ای وجود نخواهد داشت.

حال اجازه دهید به معادلات شکل ax 2 + bx = 0 نگاه کنیم که در آن عنصر آزاد برابر با صفر است. همه چیز در اینجا ساده است: همیشه دو ریشه وجود خواهد داشت. کافی است چند جمله ای را فاکتور بگیریم:

حذف ضریب مشترکخارج از پرانتز

زمانی که حداقل یکی از عوامل صفر باشد، حاصلضرب صفر است. ریشه ها از اینجا می آید. در پایان، اجازه دهید به چند مورد از این معادلات نگاه کنیم:

وظیفه. حل معادلات درجه دوم:

  1. x 2 - 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(-7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = -30 ⇒ x 2 = -6. هیچ ریشه ای وجود ندارد، زیرا یک مربع نمی تواند برابر با یک عدد منفی باشد.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; x 2 = -1.5.

معادله درجه دوم - آسان برای حل! *از این پس "KU" نامیده می شود.دوستان، به نظر می رسد که هیچ چیز ساده تر از حل چنین معادله ای در ریاضیات وجود ندارد. اما چیزی به من گفت که خیلی ها با او مشکل دارند. تصمیم گرفتم ببینم که Yandex در هر ماه چه تعداد برداشت بر اساس تقاضا ارائه می دهد. این چیزی است که اتفاق افتاده است، نگاه کنید:


چه مفهومی داره؟ این به این معنی است که حدود 70000 نفر در ماه جستجو می کنند این اطلاعات، این تابستان چه ربطی به آن دارد و چه اتفاقی خواهد افتاد سال تحصیلی- دو برابر بیشتر درخواست وجود خواهد داشت. این تعجب آور نیست، زیرا آن دسته از پسران و دخترانی که مدت ها پیش از مدرسه فارغ التحصیل شده اند و برای آزمون یکپارچه دولتی آماده می شوند به دنبال این اطلاعات هستند و دانش آموزان مدرسه نیز در تلاش هستند تا حافظه خود را تازه کنند.

علیرغم اینکه سایت های زیادی وجود دارند که به شما می گویند چگونه این معادله را حل کنید، من نیز تصمیم گرفتم در این زمینه مشارکت کنم و مطالب را منتشر کنم. اولاً، من مایلم بازدیدکنندگان بر اساس این درخواست به سایت من بیایند. ثانیاً، در مقالات دیگر، وقتی موضوع "KU" مطرح شد، لینک این مقاله را ارائه خواهم کرد. ثالثاً، من کمی بیشتر از آنچه که معمولاً در سایت های دیگر بیان می شود، در مورد راه حل او به شما خواهم گفت. بیا شروع کنیم!محتوای مقاله:

معادله درجه دوم معادله ای به شکل زیر است:

جایی که ضرایب a،بو c اعداد دلخواه با a≠0 هستند.

که در دوره مدرسهمواد داده شده است فرم زیر- معادلات به سه دسته تقسیم می شوند:

1. دو ریشه دارند.

2. *فقط یک ریشه داشته باشید.

3. ریشه ندارند. در اینجا به ویژه شایان ذکر است که آنها ریشه واقعی ندارند

ریشه ها چگونه محاسبه می شوند؟ فقط!

تفکیک کننده را محاسبه می کنیم. در زیر این کلمه "وحشتناک" یک فرمول بسیار ساده نهفته است:

فرمول های ریشه به شرح زیر است:

*این فرمول ها را باید از روی قلب بدانید.

بلافاصله می توانید یادداشت کنید و حل کنید:

مثال:


1. اگر D > 0 باشد، معادله دو ریشه دارد.

2. اگر D = 0 باشد، معادله یک ریشه دارد.

3. اگر D< 0, то уравнение не имеет действительных корней.

بیایید به معادله نگاه کنیم:


در این زمینه وقتی ممیز برابر صفر است درس مدرسه می گوید یک ریشه به دست می آید، اینجا برابر با نه است. همه چیز درست است، همینطور است، اما...

این تصور تا حدودی نادرست است. در واقع دو ریشه وجود دارد. بله، بله، تعجب نکنید، معلوم می شود دو ریشه های مساویو برای دقیق بودن ریاضی، پاسخ باید دارای دو ریشه باشد:

x 1 = 3 x 2 = 3

اما این چنین است - یک انحراف کوچک. در مدرسه می توانید آن را یادداشت کنید و بگویید که یک ریشه است.

حالا مثال بعدی:


همانطور که می دانیم، ریشه یک عدد منفی را نمی توان گرفت، بنابراین هیچ راه حلی در این مورد وجود ندارد.

این کل فرآیند تصمیم گیری است.

تابع درجه دوم.

این نشان می دهد که راه حل از نظر هندسی چگونه به نظر می رسد. درک این بسیار مهم است (در آینده، در یکی از مقالات راه حل نابرابری درجه دوم را با جزئیات تجزیه و تحلیل خواهیم کرد).

این تابعی از فرم است:

که در آن x و y متغیر هستند

الف، ب، ج - اعداد داده شده، جایی که a ≠ 0

نمودار یک سهمی است:

یعنی معلوم می شود که حل یک معادله درجه دوم در "y" برابر با صفرنقاط تقاطع سهمی را با محور x پیدا می کنیم. دو مورد از این نقاط می تواند وجود داشته باشد (ممیز مثبت است)، یکی (ممیز صفر است) و هیچ یک (ممیز منفی است). جزئیات در مورد تابع درجه دوم می توانید مشاهده کنیدمقاله اینا فلدمن

بیایید به نمونه هایی نگاه کنیم:

مثال 1: حل کنید 2 برابر 2 +8 ایکس–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

پاسخ: x 1 = 8 x 2 = -12

*می توان بلافاصله سمت چپ و راست معادله را بر 2 تقسیم کرد، یعنی آن را ساده کرد. محاسبات راحت تر خواهد بود.

مثال 2: تصميم گرفتن x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

ما دریافتیم که x 1 = 11 و x 2 = 11

نوشتن x=11 در جواب جایز است.

پاسخ: x = 11

مثال 3: تصميم گرفتن x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

ممیز منفی است، هیچ راه حلی در اعداد واقعی وجود ندارد.

پاسخ: راه حلی ندارد

ممیز منفی است. راه حلی وجود دارد!

در اینجا ما در مورد حل معادله در حالتی که معلوم شد صحبت خواهیم کرد تمایز منفی. آیا شما چیزی در مورد اعداد مختلط? من در اینجا به طور مفصل در مورد چرایی و کجا به وجود آمدند و چه هستند صحبت نمی کنم نقش خاصو نیاز به ریاضیات، این موضوع برای یک مقاله بزرگ جداگانه است.

مفهوم عدد مختلط

کمی تئوری

عدد مختلط z عددی از فرم است

z = a + bi

جایی که a و b هستند اعداد واقعی، i به اصطلاح واحد خیالی است.

a+bi - این یک عدد واحد است، نه یک عدد.

واحد خیالی برابر است با ریشه منهای یک:

حالا معادله را در نظر بگیرید:


دو ریشه مزدوج می گیریم.

معادله درجه دوم ناقص

بیایید موارد خاص را در نظر بگیریم، این زمانی است که ضریب "b" یا "c" برابر با صفر (یا هر دو برابر با صفر) باشد. آنها را می توان به راحتی و بدون هیچ تبعیضی حل کرد.

مورد 1. ضریب b = 0.

معادله تبدیل می شود:

بیایید تبدیل کنیم:

مثال:

4x 2 –16 = 0 => 4x 2 = 16 => x 2 = 4 => x 1 = 2 x 2 = -2

مورد 2. ضریب c = 0.

معادله تبدیل می شود:

بیایید تبدیل و فاکتورسازی کنیم:

*زمانی که حداقل یکی از عوامل برابر با صفر باشد، حاصل ضرب برابر با صفر است.

مثال:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 یا x–5 =0

x 1 = 0 x 2 = 5

مورد 3. ضرایب b = 0 و c = 0.

در اینجا واضح است که جواب معادله همیشه x = 0 خواهد بود.

خواص مفید و الگوهای ضرایب.

خواصی وجود دارد که به شما امکان می دهد معادلات را با ضرایب بزرگ حل کنید.

آایکس 2 + bx+ ج=0 برابری برقرار است

آ + ب+ c = 0،که

- اگر برای ضرایب معادله آایکس 2 + bx+ ج=0 برابری برقرار است

آ+ s =ب, که

این خواص به تصمیم گیری کمک می کند یک نوع خاصمعادلات

مثال 1: 5001 ایکس 2 –4995 ایکس – 6=0

مجموع شانس ها 5001+ ( 4995)+( 6) = 0، به این معنی

مثال 2: 2501 ایکس 2 +2507 ایکس+6=0

برابری برقرار است آ+ s =ب, به معنای

نظم ضرایب.

1. اگر در معادله ax 2 + bx + c = 0 ضریب "b" برابر با (a 2 +1) و ضریب "c" به صورت عددی باشد. برابر با ضریب«الف» پس ریشه های آن برابر است

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

مثال. معادله 6 x 2 + 37 x + 6 = 0 را در نظر بگیرید.

x 1 = -6 x 2 = -1/6.

2. اگر در معادله ax 2 – bx + c = 0 ضریب «b» برابر با (a 2 +1) و ضریب «c» از نظر عددی برابر با ضریب «a» باشد، ریشه های آن برابر است.

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

مثال. معادله 15x2 –226x+15 = 0 را در نظر بگیرید.

x 1 = 15 x 2 = 1/15.

3. اگر در معادله ax 2 + bx – c = 0 ضریب "b" برابر است با (a 2 - 1) و ضریب "c" عددی برابر با ضریب a است, سپس ریشه های آن برابر است

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

مثال. معادله 17x2 +288x – 17 = 0 را در نظر بگیرید.

x 1 = – 17 x 2 = 1/17.

4. اگر در معادله ax 2 – bx – c = 0 ضریب “b” برابر با (a 2 – 1) و ضریب c از نظر عددی برابر با ضریب “a” باشد، ریشه های آن برابر است.

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

مثال. معادله 10x2 – 99x –10 = 0 را در نظر بگیرید.

x 1 = 10 x 2 = – 1/10

قضیه ویتا

قضیه ویتا به افتخار ریاضیدان معروف فرانسوی فرانسوا ویتا نامگذاری شده است. با استفاده از قضیه ویتا می توان مجموع و حاصل ضرب ریشه های یک KU دلخواه را بر حسب ضرایب آن بیان کرد.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

در کل عدد 14 فقط 5 و 9 را می دهد. اینها ریشه هستند. با مهارت خاصی، با استفاده از قضیه ارائه شده، می توانید بسیاری از معادلات درجه دوم را بلافاصله به صورت شفاهی حل کنید.

علاوه بر این، قضیه ویتا. راحت است که پس از حل معادله درجه دوم به روش معمول(از طریق تشخیص دهنده) ریشه های حاصل را می توان بررسی کرد. توصیه می کنم همیشه این کار را انجام دهید.

روش حمل و نقل

با این روش، ضریب "a" در جمله آزاد ضرب می شود، گویی به آن "پرتاب" می شود، به همین دلیل به آن می گویند. روش "انتقال".این روش زمانی استفاده می شود که بتوانید به راحتی ریشه های معادله را با استفاده از قضیه ویتا بیابید و مهمتر از همه، زمانی که تفکیک کننده یک مربع دقیق باشد.

اگر آ± b+c≠ 0، سپس از تکنیک انتقال استفاده می شود، به عنوان مثال:

2ایکس 2 – 11x+ 5 = 0 (1) => ایکس 2 – 11x+ 10 = 0 (2)

با استفاده از قضیه ویتا در رابطه (2)، به راحتی می توان تعیین کرد که x 1 = 10 x 2 = 1

ریشه های حاصل از معادله باید بر 2 تقسیم شود (از آنجایی که این دو از x 2 "پرتاب" شده اند)، به دست می آوریم

x 1 = 5 x 2 = 0.5.

منطق چیست؟ ببین چه خبره

ممیز معادلات (1) و (2) برابر است:

اگر به ریشه های معادلات نگاه کنید، فقط به دست می آورید مخرج های مختلف، و نتیجه دقیقاً به ضریب x 2 بستگی دارد:


دومی (اصلاح شده) دارای ریشه هایی است که 2 برابر بزرگتر هستند.

بنابراین، نتیجه را بر 2 تقسیم می کنیم.

*اگر سه رول کنیم حاصل را تقسیم بر 3 و غیره می کنیم.

پاسخ: x 1 = 5 x 2 = 0.5

مربع ur-ie و آزمون یکپارچه ایالتی.

من به طور خلاصه در مورد اهمیت آن به شما می گویم - شما باید بتوانید سریع و بدون فکر تصمیم بگیرید، باید فرمول های ریشه ها و تمایزات را از روی قلب بدانید. بسیاری از مسائل موجود در وظایف آزمون یکپارچه ایالتی به حل یک معادله درجه دوم (شامل موارد هندسی) خلاصه می شود.

چیزی که قابل توجه است!

1. شکل نوشتن یک معادله می تواند "ضمنی" باشد. به عنوان مثال، ورودی زیر ممکن است:

15+ 9x 2 - 45x = 0 یا 15x+42+9x 2 - 45x=0 یا 15 -5x+10x 2 = 0.

شما باید آن را به یک فرم استاندارد بیاورید (تا هنگام حل گیج نشوید).

2. به یاد داشته باشید که x یک کمیت مجهول است و می توان آن را با هر حرف دیگری نشان داد - t، q، p، h و غیره.